Projective unitary representations of infinite dimensional Lie groups

Bas Janssens and Karl-Hermann Neeb

October 29, 2014

Abstract

In the context of Lie groups G modeled on (not necessarily closed) locally convex spaces, we show that smooth *projective* unitary representations of G correspond to smooth *linear* unitary representations of a central \mathbb{T} -extension \widehat{G} . The main point here is to prove that the central extension, which is a topological group by construction, carries an appropriate smooth structure. We use these results to show that the projective representations of loop groups and $\mathrm{Diff}(S^1)$ correspond to linear representations of affine Kac-Moody groups and Virasoro groups, respectively.

Contents

1	8 1	2
	1.1 Smooth functions	
	1.2 Locally convex Lie groups	
2	Projective unitary representations	4
	2.1 Unitary representations	4
	2.2 Projective unitary representations	5
3	Lie algebra representations	6
	3.1 Derivation of group representations	6
	3.2 Globalisation of Lie algebra representations	
	3.2.1 Topology on the space of smooth vectors	
	3.2.2 Regular Lie algebra representations	10
4	Projective unitary representations and central extensions	12
	4.1 From projective to linear representations	12
5	Smoothness of projective representations	17
	5.1 Smoothness criteria	17
	5.2 Structure of the set of smooth rays	
6	Lie algebra extensions and cohomology	19

7	Cov	variant representations	22		
8	Adı	missible derivations	24		
	8.1	Admissible derivations	24		
	8.2	Cocycles for positive energy	27		
9	App	olications	27		
	9.1	Abelian Lie groups	28		
	9.2	Loop groups	29		
		9.2.1 Algebraic version	30		
		9.2.2 Differential geometric version	30		
	9.3				
	9.4	Gauge groups			
10	Que	estions	31		
	10.1	Unfinished: Topology on the space of analytic vectors	32		