Sheaves of Lie Algebras of Vector Fields

Bas Janssens and Ori Yudilevich

April 1, 2014

1 Truncated Lie algebras

Fifth lecture on Singer and Sternberg's 1965 paper [1], by Bas Janssens.

1.1 Introduction

Let V be a finite dimensional vector space. On the bosonic Fock space S(V), we define the *creation operator* for $v \in V$ by $a_B^*(v): u \mapsto v \lor u$ and the *annihilation operator* for $\alpha \in V^*$ by $a_B(\alpha): u \mapsto i_{\alpha}u$ (contraction with α). Similarly, we define creation and annihilation operators on the fermionic Fock space $\bigwedge V$ by $a_F^*(v): w \mapsto v \land w$ and $a_F(\alpha): w \mapsto i_{\alpha}w$. On the bigraded module $S(V) \otimes \bigwedge(V)$, we consider the differential

$$\partial^* = \sum_i a^*_B(e_i) \otimes a_F(\epsilon^i)$$

where (e_1, \ldots, e_n) is a basis of V and $(\epsilon^1, \ldots, \epsilon^n)$ the dual basis of V^{*}. Explicitly, it satisfies

$$\partial^*(u_1 \vee \ldots \vee u_k) \otimes (v_1 \wedge \ldots \wedge v_l) = \sum_{j=1}^l (-1)^j (v_j \vee u_1 \vee \ldots \vee u_k) \otimes (v_1 \wedge \ldots \hat{v}_j \ldots \wedge v_l).$$

Using the $[a_B(\alpha), a_B^*(v)] = \alpha(v)\mathbf{1}$ (CCR) and $\{a_F(\alpha), a_F^*(v)\} = \alpha(v)\mathbf{1}$ (CAR), one verifies the following commutation relations.

Proposition 1.1. We have $[\partial^*, a_B^*(v)] = 0$ and $\{\partial^*, a_F^*(v)\} = a_B^*(v)$.

Let W be a finite dimensional vector space. We continue to denote the extension of ∂^* to $S(V) \otimes W^* \otimes \bigwedge V$ by ∂^* and we denote its dual on $\overline{S}(V^*) \otimes W \otimes \bigwedge V^*$ by ∂ . Let $\mathfrak{g} \subseteq \overline{S}(V^*) \otimes W$ be a graded subspace such that $\operatorname{ann}(\mathfrak{g}) \subseteq S(V) \otimes W^*$ is a S(V)-module. We have seen before that this is equivalent to $\mathfrak{g}_{k+1} \subseteq \operatorname{prol}(\mathfrak{g}_k)$ for all k. In this case, the operator ∂ restricts to $\mathfrak{g} \otimes \bigwedge V \subseteq S(V^*) \otimes W \otimes \bigwedge V$. Its homology is called the *Spencer homology* of \mathfrak{g} .

Theorem 1.2. The Spencer homology is finite dimensional.

Proof. The Spencer homology is dual to the cohomology of the operator ∂^* on $\mathfrak{g}^* \otimes \bigwedge V$. Since $\operatorname{ann}(\mathfrak{g})$ is an S(V)-module, the quotient $\mathfrak{g}^* = S(V) \otimes W^*/\operatorname{ann}(\mathfrak{g})$ is a finitely generated S(V)-module. Since $[\partial^*, a_B^*(v)] = 0$, the kernel $\operatorname{Ker}(\partial^*) \subseteq \mathfrak{g}^* \otimes \bigwedge V$ is an S(V)-submodule of a finitely generated S(V)-module, hence finitely generated itself by the Hilbert Basis Theorem. But $a_B^*(V)\operatorname{Ker}(\partial^*) \subseteq \operatorname{Im}(\partial^*)$ because $\{\partial^*, a_F^*(v)\} = a_B^*(v)$, so $\operatorname{Ker}(\partial^*)/\operatorname{Im}(\partial^*)$ is not only finitely generated, but even finite dimensional.

References

 I. M. Singer and Shlomo Sternberg. The infinite groups of Lie and Cartan. I. The transitive groups. J. Analyse Math., 15:1–114, 1965.