Sheaves of Lie Algebras of Vector Fields

Bas Janssens and Ori Yudilevich

March 27, 2014

1 Cartan's first fundamental theorem.

Second lecture on Singer and Sternberg's 1965 paper [3], by Bas Janssens.

1.1 Introduction

Let M be a smooth connected manifold and let Vec be the sheaf of smooth vector fields on M. Let $\mathcal{L} \subseteq$ Vec be a sheaf of Lie algebras of vector fields, that is, a subsheaf of Vec that is closed under the Lie bracket. For $x \in M$, let \mathcal{L}_x be the Lie algebra of germs of sections of \mathcal{L} around x. It is filtered by the subalgebras $\mathcal{L}_{x,k}$ of germs that vanish to order k (where we set $\mathcal{L}_{x,k} = \mathcal{L}_x$ for k < 0).

Definition 1.1. We define the *formal Lie algebra* of \mathcal{L} at x by

$$L_x := \varprojlim_k L_x^k,$$

where $L_x^k := \mathcal{L}_x / \mathcal{L}_{x,k}$ is the space of k-jets of sections of \mathcal{L} at x.

It is filtered by the subalgebras $L_{x,k} := \varprojlim_n \mathcal{L}_{x,k}/\mathcal{L}_{x,n}$ of formal jets that vanish to order k. If we endow L_x with the inverse limit topology induced by the norm topology of the (finite dimensional) spaces L_x^k , then L_x becomes a Fréchet Lie algebra. For every open neighbourhood U of x, the Lie algebra $\mathcal{L}(U)$ is a (not necessarily closed) locally convex subalgebra of $\operatorname{Vec}(U)$, and the evaluation $\operatorname{ev}_x \colon \mathcal{L}(U) \to L_x$ is a morphism of locally convex Lie algebras.

Definition 1.2. We define \mathfrak{g}_x to be the associated graded Lie algebra of L_x .

More explicitly, if we define \mathfrak{g}_x^k to be the kernel of the map $L_x^{k+1} \to L_x^k$, that is, the space of k+1-symbols of sections of \mathcal{L} at x, then we have $\mathfrak{g}^k = L_{x,k}/L_{x,k+1}$ (in particular, $\mathfrak{g}_x^k = \{0\}$ for k < -1), so

$$\mathfrak{g}_x = \prod_{k=-1}^{\infty} \mathfrak{g}^k.$$

With respect to the Lie algebra and topology inherited from L_x , the associated graded Lie algebra \mathfrak{g}_x is a graded Fréchet Lie algebra.

An important example is obtained by taking $\mathcal{L} = \text{Vec.}$ Then L_x is $J_x^{\infty} := \lim_{k \to \infty} J_x^k(TM)$, the inverse limit of the k-jets at x of sections of the tangent bundle. Note that $J^{\infty} \to M$ is a locally trivial bundle of Fréchet Lie algebras.

We denote the associated graded Lie algebra \mathfrak{g}_x by Sb_x , the inverse limit over the spaces $\mathrm{Sb}_x^k = \mathrm{Ker}(J_x^{k+1}(TM) \to J_x^k(TM))$, equal to $\mathrm{Vec}_{x,k}/\mathrm{Vec}_{x,k+1}$, of symbols of order k+1. Note that Sb_x^k can be canonically identified with $S^{k+1}(T_x^*M) \otimes T_xM$, and that this identification is a bundle isomorphism. We thus have

$$Sb = \prod_{k=-1}^{\infty} S^{k+1}(T^*M) \otimes TM$$

as a locally trivial bundle of graded Fréchet Lie algebras over M.

1.2 Some relevant algebra

In this section, we will see that the fact that L_x is subalgebra of Sb_x imposes severe restrictions on the algebraic structure of L_x .

The coadjoint representation of Sb_x on its continuous dual

$$\operatorname{Sb}_x^* = \bigoplus_{k=-1}^{\infty} S^{k+1}(T_x M) \otimes T_x^* M$$

yields an action of the universal enveloping algebra $\mathcal{U}(\mathrm{Sb}_x)$ on Sb_x^* . The inclusion of the abelian Lie algebra $T_x M = \mathrm{Sb}_x^{-1}$ into Sb_x yields an inclusion of $\mathcal{U}(\mathrm{Sb}_x^{-1}) = S(T_x M)$ into $\mathcal{U}(\mathrm{Sb}_x)$, hence an action of $S(T_x M)$ on Sb_x^* .

Proposition 1.3. The coadjoint action of $S(T_xM) \subseteq U(Sb_x)$ on the continuous dual $Sb_x^* = S(T_xM) \otimes T_x^*M$ is induced by the symmetric tensor product $\lor : S(T_xM) \times S(T_xM) \to S(T_xM).$

Proof. For $v \in T_x M$, the adjoint action $\operatorname{ad}_v \colon \operatorname{Sb}_x^k \to \operatorname{Sb}_x^{k-1}$ is given on $\gamma \otimes w \in S^{k+1}(T^*M) \otimes T_x M \simeq \operatorname{Sb}_x^k$ by $\operatorname{ad}_v(\gamma \otimes w) = (i_v \gamma) \otimes w$. The dual of the annihilation operator i_v on $\overline{S}(T_x^*M) := \prod_{j=0}^{\infty} S^j(T_x^*M)$ is the creation operator $u \mapsto v \lor u$ on $S(T_x M)$. Since $\mathcal{U}(\operatorname{Sb}_x^{-1})$ is generated by $T_x M$, the proposition follows. \Box

Corollary 1.4. The annihilator $\operatorname{ann}(\mathfrak{g}_x)$ of \mathfrak{g}_x in Sb_x^* is a $S(\mathfrak{g}_x^{-1})$ -module.

Proof. For $v \in \mathfrak{g}_x^{-1} \subseteq T_x M$, we have $\operatorname{ad}_v(\mathfrak{g}) \subseteq \mathfrak{g}$. The action of ad_v^* on Sb_x^* therefore preserves the subspace $\operatorname{ann}(\mathfrak{g}_x)$.

We call \mathcal{L} transitive at $x \in M$ if $\mathfrak{g}_x^{-1} = T_x M$. Combining Corollary 1.4 with the Hilbert Basis Theorem and the Artin-Rees Lemma, we obtain the following theorem.

Theorem 1.5. If \mathcal{L} is transitive at $x \in M$, then there exists a $k_0 \in \mathbb{N}$ such that for all $k \geq k_0$, the space $\mathfrak{g}_x^k \subseteq S^{k+1}(T_x^*M) \otimes T_xM$ is determined by $\mathfrak{g}_x^{k-1} \subseteq S^k(T_x^*M) \otimes T_xM$ by

$$\mathfrak{g}_x^k = \left(T_x^*M \otimes \mathfrak{g}_x^{k-1}\right) \cap \left(S^{k+1}(T_x^*M) \otimes T_xM\right) \,.$$

Proof. Since $\mathfrak{g}_x^{-1} = T_x M$, Corollary 1.4 implies that $\operatorname{ann}(\mathfrak{g}_x)$ is a $S(T_x M)$ -submodule of the finitely generated $S(T_x M)$ -module $\operatorname{Sb}_x^* = S(T_x M) \otimes T_x^* M$. By the Hilbert Basis Theorem, $\operatorname{ann}(\mathfrak{g}_x)$ is finitely generated itself, and the Artin-Rees Lemma then implies that the filtration of $\operatorname{ann}(\mathfrak{g}_x)$ is essentially \mathfrak{m} -adic for the maximal ideal $\mathfrak{m} = \bigoplus_{j=1}^{\infty} S(T_x M)$ of $S(T_x M)$. Since $S(T_x M)$ and \mathfrak{g}_x are graded, there exists a $k_0 \in \mathbb{N}$ such that for all $k \geq k_0$, we have

$$\operatorname{ann}(\mathfrak{g}^k) = T_x M \vee \operatorname{ann}(\mathfrak{g}_x^{k-1}).$$
(1)

This implies that for sufficiently large values of k, the space \mathfrak{g}_x^{k-1} determines \mathfrak{g}^k . Dualising equation (1), we calculate

$$\begin{aligned} \mathfrak{g}_x^k &= \operatorname{ann}(T_x M \otimes \operatorname{ann}(\mathfrak{g}_x^{k-1})) \cap S^{k+1}(T_x^* M) \otimes T_x M \\ &= T_x^* M \otimes \mathfrak{g}_x^{k-1} \cap S^{k+1}(T_x^* M) \otimes T_x M \,, \end{aligned}$$

where $\operatorname{ann}(T_x M \otimes \operatorname{ann}(\mathfrak{g}_x^{k-1}))$ is the annihilator of $T_x M \otimes \operatorname{ann}(\mathfrak{g}_x^{k-1})$ inside the tensor algebra $T^{k+1}(T_x^*M) \otimes T_x M$.

In order to formulate this more succinctly, we introduce the notion of a prolongation.

Definition 1.6. The prolongation of a vector space $U \subseteq \text{Hom}(V, W)$ is the subspace $U^{(1)} \subseteq \text{Hom}(V, U)$ defined by

$$U^{(1)} = \{ T \in \text{Hom}(V, U) ; T_u(v) = T_v(u) \,\forall \, u, v \in V \} \,.$$

If we identify $\mathfrak{g}^{k-1} \subseteq S^k(T_x^*M) \otimes T_xM$ as a subspace of $\operatorname{Hom}(T_xM, S^{k-1}(T_x^*M) \otimes T_xM)$, then Theorem 1.5 can be reformulated as follows: if \mathcal{L} is transitive at $x \in M$, then for sufficiently large values of k, we have $\mathfrak{g}^k = (\mathfrak{g}^{k-1})^{(1)}$. In this language, we obtain the following corollary from the proof of Theorem 1.5.

Corollary 1.7. If \mathcal{L} is transitive at $x \in M$, then $\mathfrak{g}_x^k \subseteq (\mathfrak{g}_x^{k-1})^{(1)}$ for all $k \in \mathbb{N}$.

Proof. By Corollary 1.4, $\operatorname{ann}(\mathfrak{g}_x)$ is a $S(T_xM)$ -module, implying $\operatorname{ann}(\mathfrak{g}_x^k) \supseteq T_xM \vee \mathfrak{g}_x^{k-1}$ for all $k \in \mathbb{N}$. Repeating the dualisation at the end of the proof of Theorem 1.5, we obtain $\mathfrak{g}_x^k \subseteq (T_x^*M \otimes \mathfrak{g}_x^{k-1}) \cap (S^{k+1}(T_x^*M) \otimes T_xM)$. \Box

We can drop the requirement that \mathcal{L} be transitive at $x \in M$ if we assume the following property:

Definition 1.8. The graded Lie algebra \mathfrak{g}_x is a *tower of tableaux starting at* k_0 if $\mathfrak{g}_x^{r+1} \subseteq (\mathfrak{g}_x^r)^{(1)}$ for all $r \geq k_0$.

Note that every transitive \mathfrak{g}_x is a tower of tableaux starting at 0 by the previous corollary. If \mathcal{L} is defined by a regular PDE of order k_0 , then it is a tower of tableaux starting at k_0 .

Corollary 1.9. Let \mathcal{L} be such that \mathfrak{g}_x is a tower of tableaux starting at k_0 . Then there exists a $k \geq k_0$ such that $\mathfrak{g}_x^{r+1} = (\mathfrak{g}_x^r)^{(1)}$ for all $r \geq k$.

Proof. The assumption that \mathfrak{g}_x^{r+1} be contained in $(\mathfrak{g}_x^r)^{(1)}$ for all $r \geq k_0$ is equivalent to $\bigoplus_{r=k_0}^{\infty} \operatorname{ann}(\mathfrak{g}_x^r)$ being an $S(T_xM)$ -submodule of Sb_x^* . The proof of Theorem 1.5, mutatis mutandis, then yields the required result. \Box

Definition 1.10. We will say that \mathcal{L} is of order k if $\mathfrak{g}_x^{r+1} = (\mathfrak{g}_x^r)^{(1)}$ for all $r \ge k$.

1.3 Symmetries of a singular distribution

The k^{th} order frame bundle $F^k(M)$ is the manifold of k-jets at zero of local diffeomorphisms ψ from $U \subseteq \mathbb{R}^n$ to $\psi(U) \subseteq M$. Equipped with the projection $\pi \colon F^k(M) \to M$ defined by $\pi(j_0^k \psi) := \psi(0)$, it becomes a principal fibre bundle with structure group $\operatorname{Gl}^k(n)$, the group of k-jets of diffeomorphisms of \mathbb{R}^n that fix 0.

It carries an action by bundle automorphisms of the diffeomorphism group Diff(M), defined by $\phi: j_0^k \psi \mapsto j_0^k (\phi \circ \psi)$. This yields a Lie algebra homomorphism $F^k: \operatorname{Vec}(M) \to \operatorname{Vec}(F^k(M))$. Any sheaf \mathcal{L} of Lie algebras of vector fields on M therefore gives rise to a sheaf $F^k \mathcal{L}$ of Lie algebras of vector fields on $F^k(M)$. This in turn gives rise to the (singular) distribution $\Delta^k \subseteq TF^k M$ of values of $F^k \mathcal{L}$.

Conversely, given a (singular) distribution $\Delta \subseteq TJ^k(M, M)$, we define the sheaf \mathcal{L}_{Δ} of infinitesimal symmetries of Δ by

$$\mathcal{L}_{\Delta}(U) := \{ v \in \operatorname{Vec}(U) ; \operatorname{Im}(F^k(v)) \subseteq \Delta \}.$$

Clearly, \mathcal{L} is always a subsheaf of the sheaf of infinitesimal symmetries of the distribution Δ^k obtained from it, $\mathcal{L} \subseteq \mathcal{L}_{\Delta^k}$.

Let $J^k(M, M) \Rightarrow M$ be the groupoid of k-jets of local diffeomorphisms of M. Since this is a transitive groupoid with a canonical left action on $F^k(M)$ (defined by $j_x^k \phi: j_x^k \psi \mapsto j_x^k (\phi \circ \psi)$), a choice f_x of k-frame yields an identification of $F^k(M) \to M$ with the source fibre of $J^k(M, M) \Rightarrow M$ over x, and of $J^k(M, M) \Rightarrow M$ with the gauge groupoid $F^k(M) \times F^k(M)/\mathrm{Gl}^k(n) \Rightarrow M$.

The action of $\operatorname{Diff}(M)$ on $F^k(M)$ factors through the canonical splitting homomorphism

$$\Sigma: \operatorname{Diff}(M) \to \operatorname{Bis}(J^k(M, M)); \ \Sigma(\phi)_x := j_x^k \phi$$

into the group $\operatorname{Bis}(J^k(M,M))$ of bisections. We identify $J^k(TM) \to M$ with the Lie algebroid of the groupoid $J^k(M,M)$ (that is, the pull back by the identity $e: M \to J^k(M,M)$ of the kernel $T^s J^k(M,M)$ of the differential $s_*: TJ^k(M,M) \to TM$ of the source map s). Then the Lie algebra homomorphism $\operatorname{Vec}(M) \to \Gamma(J^k(TM))$ induced by the splitting homomorphism Σ is precisely the map $v \mapsto j^k(v)$. This shows that the distribution Δ^k on $F^k(M)$ is the image of $L^k \subseteq J^k(TM)$ under the Lie algebroid action $\pi^* J^k_x \to TF^k(M)$. In particular, $F^k(v)_{f_x}$ is in $\Delta^k_{f_x}$ if and only if $j^k v$ is in L^k_x .

We will use this in following lemma, which says that under mild conditions on \mathcal{L} , the sheaves \mathcal{L} and \mathcal{L}_{Δ^k} are in fact identical.

Lemma 1.11. Let \mathcal{L} be a sheaf of Lie algebras of vector fields such that \mathfrak{g}_x is a tower of tableaux starting at k_0 for all $x \in M$. Suppose that the order of L_x is bounded by k on M. Suppose also that \mathfrak{g}_{Δ^k} is a tower of tableaux starting at k. Then we have $L = L_{\Delta^k}$.

If, moreover, \mathcal{L} is determined by L in the sense that every $v \in \operatorname{Vec}(U)$ with $j_x^{\infty}(v) \in L_x$ for all $x \in U$ belongs to $\mathcal{L}(U)$, then we have $\mathcal{L} = \mathcal{L}_{\Delta^k}$.

Proof. Since \mathcal{L} is contained in \mathcal{L}_{Δ^k} , we have $L \subseteq L_{\Delta^k}$. Because v is in $\mathcal{L}_{\Delta^k}(U)$ if and only if $F^k(v)_{f_x}$ is in $\Delta^k_{f_x}$ for all $f_x \in F^k(M)$, which in turn is the case if and only if $j^k_x(v) \in L^k_x$ for all $x \in U$, we have $L^k = L^k_{\Delta^k}$. In particular, $\mathfrak{g}^r = \mathfrak{g}^r_{\Delta^k}$

for all $r \leq k$. Now $\mathfrak{g}_{\Delta^k}^{k+r} \subseteq (\mathfrak{g}_{\Delta^k}^k)^{(r)}$ for all r > 0 by assumption. We thus find

$$\mathfrak{g}_{\Delta^k}^{k+r} \subseteq (\mathfrak{g}_{\Delta^k}^k)^{(r)} = (\mathfrak{g}^k)^{(r)} = \mathfrak{g}^{k+r} \,,$$

the last equality following from the fact that \mathfrak{g} is of order at most k. Since the opposite inclusion is clear, we have $\mathfrak{g}_{\Delta k}^r = \mathfrak{g}^r$ for all r. From this and from $L \subseteq L_{\Delta k}$, it follows that $L = L_{\Delta k}$.

It remains to prove the last statement. We have already seen that $\mathcal{L} \subseteq \mathcal{L}_{\Delta^k}$ and $L = L_{\Delta^k}$. Now every $v \in \mathcal{L}_{\Delta^k}(U)$ satisfies $j_x^{\infty}(v) \in (L_{\Delta^k})_x = L_x$ for all $x \in M$, hence lies in $\mathcal{L}(U)$. Thus $\mathcal{L}_{\Delta^k} \subseteq \mathcal{L}$ and the sheaves are equal. \Box

The problem of realising \mathcal{L} as the sheaf of infinitesimal symmetries of a finite dimensional geometric object is thus essentially equivalent to the problem of integrating the singular foliation Δ^k .

By the Stefan-Sussman theorem [4, Corollary 1], the singular distribution Δ^k is integrable (through every point in $J^k(M, M)$ passes an integral manifold of Δ^k) if and only if the pushforward $\exp(tX)_* \colon L^k_x \to L^k_y$ of the local flow $\exp(tX)$ along $X \in \mathcal{L}(U)$ is an isomorphism for all $x \in \operatorname{Dom}(\exp(tX))$ and $y = \exp(tX)(x)$.

The assumption that \mathfrak{g}_{Δ^k} be a tower of tableaux is in this context a plausibe assumption; if Δ^k is sufficiently regular, it follows from the fact that \mathcal{L}^k_{Δ} is defined by a PDE of order k.

Example 1.12. Let \mathcal{L} be the sheaf of vector fields on \mathbb{R}^n that vanish at 0. Then one readily checks that \mathcal{L} satisfies the conditions of Lemma 1.11 for k = 0. The distribution Δ_x^0 on $F^0(M) = M$ is given by $T_x \mathbb{R}^n$ for $x \neq 0$ and by $\{0\}$ for x = 0. It is clearly integrable and yields the singular foliation of \mathbb{R}^n into 0 and $\mathbb{R}^n - 0$. Lemma 1.11 thus constructs a geometric object (the division of \mathbb{R}^n into $\{0\}$ and $\mathbb{R}^n - \{0\}$) from the sheaf \mathcal{L} , and yields the somewhat tautologous statement that every vector field with $j^0 v|_0 = 0$ belongs to \mathcal{L} .

Example 1.13. Let \mathcal{L} be the sheaf of vector fields on \mathbb{R}^n that vanish on the x^1 -axis ℓ . Then $\mathfrak{g}_x = \operatorname{Sb}_x$ for $x \notin \ell$ and $\mathfrak{g}_x = \sum_{i=2}^n x_i \cdot \operatorname{Sb}_x$ for $x \in \ell$. Hence $(\mathfrak{g}^k)^{(1)}$ is strictly smaller than \mathfrak{g}^{k+1} for all k, and Lemma 1.11 does not apply. Nonetheless, the distribution Δ^0 is well defined and integrable, and the foliation of \mathbb{R}^n into $\mathbb{R}^n - \ell$ and the points $\{p\} \in \ell$ determines the sheaf.

1.4 Lie Algebra Sheaves (LAS) of order k

We streamline the process of applying Lemma 1.11 by imposing conditions on \mathcal{L} that insure regularity of Δ^k . We call a sheaf of Lie algebras regular of order k if $L^k \to M$ is a smooth vector bundle.

Definition 1.14. We call a sheaf \mathcal{L} of Lie algebras of vector fields a Lie Algebra Sheaf (LAS) of order k if it is regular of order k, if \mathfrak{g}_x is a tower of tableaux starting at $k_0 \leq k$ and the order of L_x is bounded by k on M, and if \mathcal{L} is determined by L in the sense that $j_x^{\infty} v \in L_x$ for all $x \in U$ implies $v \in \mathcal{L}(U)$.

Remark 1.15. Every sheaf of Lie algebras of vector fields defined by a regular, linear PDE of order k_0 is a LAS of order k for some $k \ge k_0$.

Remark 1.16. Part of the definition of a LAS in the sense of Singer-Sternberg [3, Def. 1.8] is regularity of order 0. Our notion of a LAS of order k is therefore less restrictive.

The following theorem, which is essentially Cartan's First Fundamental Theorem, is a reformulation of Lemma 1.11 for LAS of order k.

Theorem 1.17 (Cartan I for LAS of order k). For every LAS of order k, there exists a Lie groupoid $\mathcal{G}_L^k \rightrightarrows M$ with a locally free action

$$a: \mathcal{G}_{L}^{k} \times_{\pi} F^{k}(M) \to F^{k}(M)$$

such that \mathcal{L} is the sheaf of symmetries of this action, in the sense that $\mathcal{L}(U)$ is the Lie algebra of all $v \in \operatorname{Vec}(M)$ such that the vector field $F^k(v)$ on $F^k(M)$ is parallel to the \mathcal{G}_L^k -orbits.

In other words: every LAS of order k is the sheaf of infinitesimal symmetries of a locally free groupoid action on the k^{th} order frame bundle.

Proof. The fact that $L^k \to M$ is a smooth vector bundle implies that Δ^k is a regular foliation. In particular, \mathcal{L}_{Δ^k} is defined by a PDE of order k, so that \mathfrak{g}_{Δ^k} is a tower of tableaux starting at k. It follows from Lemma 1.11 that $\mathcal{L} = \mathcal{L}_{\Delta^k}$.

Since L^k is smooth and \mathcal{L} is closed under the Lie bracket, $L^k \to M$ is a Lie subalgebroid of the integrable algebroid $J^k(TM)$. By Prop. 3.4 and 3.5 in [1], L^k then integrates to a Lie groupoid $\mathcal{G}_L^k \rightrightarrows M$ with an immersive morphism $\iota: \mathcal{G}_L^k \to J^k(M, M)$ of Lie groupoids. (In general, this immersion will be neither injective nor closed [2].) The free action of $J^k(M, M)$ on $F^k(M)$ then yields a locally free action of \mathcal{G}_L^k on $F^k(M)$, and v is in $\mathcal{L}_{\Delta^k}(U)$ if and only if $F^k(v)$ is tangent to the orbits.

The following is a simple example of a LAS of order 1 which is not a LAS in the sense of Singer-Sternberg. This shows that Theorem 1.17 applies to a trictly wider class of sheaves than the ones in [3].

Example 1.18. Let \mathcal{L} be the sheaf of Lie algebras of vector fields on $M = \mathbb{R}^2$ defined by letting $\mathcal{L}(U) := \mathbb{R} \cdot v|_U$ for $v := x_1 \partial_{x_2} - x_2 \partial_{x_1}$. If we identify J_x^{∞} with $\prod_{k=-1}^{\infty} S^{k+1}(\mathbb{R}^{2*}) \otimes \mathbb{R}^2$, we obtain

 $L_{(u_1,u_2)} = \mathbb{R} \cdot \left((u_1 \partial_{x_2} - u_2 \partial_{x_1}) \oplus (dx_1 \otimes \partial_{x_2} - dx_2 \otimes \partial_{x_1}) \right).$

Note that $L^1 \to M$ is a smooth bundle, as are all the L^k with $k \ge 1$ and the bundle of Fréchet spaces $L \to M$. The sheaf \mathcal{L} is a LAS of order 1 because, moreover, $\mathbf{g}_x^k = 0$ for $k \ge 1$.

Note, however, that none of the maps $L^0 \to M$, $\mathfrak{g}^{-1} \to M$ and $\mathfrak{g}^0 \to M$ have constant rank, so \mathcal{L} is not regular of order 0. The groupoid \mathcal{G}_L^1 integrating the Lie algebroid $L^0 \to M$ is easily seen to be the action groupoid $\mathbb{R}^2 \times \mathrm{SO}(2) \rightrightarrows \mathbb{R}^2$ with the obvious action on the frame bundle $F^1(\mathbb{R}^2)$.

This is the general situation for sheaves of Lie algebras that come from group actions with finite order fixed points.

Corollary 1.19 (Symmetries of a group action). Let G be a connected Lie group, $G \curvearrowright M$ a Lie group action, and $\xi \colon \mathfrak{g} \to \operatorname{Vec}(M)$ the associated Lie algebra morphism. Suppose that for every nonzero $X \in \mathfrak{g}$, all fixed points of ξ_X are of order $\leq k_0$. Then $\mathcal{L}(U) := \{\xi_X|_U; X \in \mathfrak{g}\}$ is a LAS of order $k_0 + 1$. The corresponding groupoid \mathcal{G}_L^k is the action groupoid $G \times M \rightrightarrows M$ with the obvious action on $F^k(M)$. Proof. Since the fixed points are of order k_0 , the action of $G \times M$ on $F^k(M)$ is locally free for $k \geq k_0 + 1$. Because the vector fields $F^k(\xi_X)$ on $F^k(M)$ are nonvanishing, \mathcal{L} is a sheaf and L^k is a smooth subbundle of $J^k(TM)$. Since \mathfrak{g}_x^r is the kernel of $L^{r+1} \to L^r$, it is zero for $r \geq k$. It follows that \mathcal{L} is a LAS of order k. The groupoid integrating the Lie algeboid L^k is the action groupoid with the canonical action on $F^k(M)$, so Theorem 1.17 implies that \mathcal{L} is the sheaf of vector fields v such that for each k-frame f_x , there exists an $X \in \mathfrak{g}$ such that $F^k(v)_{f_x} = F^k(\xi_X)_{f_x}$.

1.5 Transitive sheaves

The situation becomes especially transparent if the sheaves of Lie algebras are transitive.

Definition 1.20. Let \mathcal{L} be a sheaf of Lie algebras of vector fields on a connected manifold M. Then \mathcal{L} is called a *transitive Lie Algebra Sheaf* if $L_x^0 = T_x M$ for all $x \in M$, if the pushforward $\exp(tX)_* \colon \mathcal{L}_x \to \mathcal{L}_y$ yields an isomorphism $L_x \to L_y$ for all $x, y \in M$ with $y = \exp(tX)(x)$ and if \mathcal{L} is determined by L in the sense that $j_x^{\infty}(v) \in L_x$ for all $x \in U$ implies $v \in \mathcal{L}(U)$.

This coincides with the notion of a transitive LAS in the sense of Singer-Sternberg, cf. [3], def. 1.3, 1.4 and 1.8. We set out to prove that every transitive LAS is a LAS of finite order in the sense defined before.

Proposition 1.21. For every transitive LAS, the subset $L \subseteq J^{\infty}$ is a smooth locally trivial bundle of Fréchet Lie algebras over M. The same holds for all bundles $L^k \to M$.

Proof. Since \mathcal{L} is transitive, every $x_0 \in M$ possesses a neighbourhood U with a local frame X_1, \ldots, X_d of sections of $\mathcal{L}(U)$. For $\vec{x} = (x_1, \ldots, x_d) \in \mathbb{R}^d$ sufficiently close to zero, $\phi_{\vec{x}} = \exp(x_1X_1) \circ \ldots \circ \exp(x_nX_n)$ is well defined. By shrinking U if necessary, we obtain a chart $\kappa^{-1} \colon \mathbb{R}^d \supseteq V \to U \subseteq M$ by $\kappa^{-1}(\vec{x}) = \phi_{\vec{x}}(x_0)$. The map $V \times L_{x_0} \to L$ defined by $(\vec{x}, Y) \mapsto \phi_{\vec{x}*} Y$ is a local trivialisation of L over U and every two such trivialisations differ by a smooth isomorphism of the trivial bundles $V \cap \kappa \kappa'^{-1}(V') \times L_{x_0} \to V' \cap \kappa' \kappa^{-1}(V) \times L_{x'_0}$. Since these isomorphisms preserve the filtration, not only $L \to M$ but also all the $L^k \to M$ are smooth. \Box

By Theorem 1.5, transitivity of L_x , i.e. the requirement $\mathfrak{g}_x^{-1} = T_x M$ for all $x \in M$, implies that L_x has finite order. Because all L_x are isomorphic, the order is locally constant, hence finite. We arrive at the following proposition.

Proposition 1.22. Every transitive LAS is a LAS of finite order that is regular of order 0. For all $k \in \mathbb{N}$, the bundle $L^k \to M$ is a transitive Lie algebroid.

We can now apply Theorem 1.17 to obtain a *transitive* groupoid \mathcal{G}_L^k , the source fibre at of which is a principal fibre bundle over M.

Theorem 1.23 (Cartan I for Transitive LAS). If \mathcal{L} is a transitive LAS, then there exists an immersed principal subbundle $P_L \subseteq F^k(M)$ whose structure group has Lie algebra $L_{x,0}/L_{x,k+1}$, such that \mathcal{L} is the sheaf of infinitesimal symmetries of P_L , in the sense that $v \in \operatorname{Vec}(U)$ is in $\mathcal{L}(U)$ if and only if $F^k(v)|_p$ is in T_pP_L for all $p \in P_L$. In other words: every transitive LAS is the sheaf of symmetries of an immersed subbundle of the k^{th} order frame bundle.

Proof. Since \mathcal{L}^k is transitive, so is $\mathcal{G}_L^k \rightrightarrows M$, and its source fibre at $x_0 \in M$ is the principal fibre bundle $\mathcal{G}_{L,*,x_0}^k \rightarrow M$. The Lie algebra of its structure group $\mathcal{G}_{L,x_0,x_0}^k$ is the kernel of the anchor $L_{x_0}^k \rightarrow L_{x_0}^0$. Since $\iota : \mathcal{G}_L^k \rightarrow J^k(M, M)$ is an immersion, the kernel K of the map $\iota : \mathcal{G}_{L,x_0,x_0} \rightarrow \mathcal{G}_{x_0,x_0}^k$ is a closed discrete normal subgroup of \mathcal{G}_{L,x_0,x_0} . Now $P := \mathcal{G}_{L,*,x_0}^k/K$ is a principal fibre bundle with structure group $\mathcal{G}_{L,x_0,x_0}^k/K$. If we identify the source fibre at x_0 of $J^k(M, M)$ with $F^k(M)$, then the equivariant immersion $P \rightarrow F^k(M)$ is injective, and the distribution Δ^k on $F^k(M)$ consists of the translates of $TP \subseteq TF^k(M)$ by the structure group $\mathrm{Gl}^k(n)$.

Let us consider the images P_L^j of P_L under the projection maps $\pi_j^k \colon F^k(M) \to F^j(M)$. For each $j = 0, \ldots, k$, we have an inclusion $\iota_j \colon P_L^j \hookrightarrow F^j(M)$. The immersed subbundle P_L^1 of $F^1(M)$ is a subbundle of the 'ordinary' frame bundle, hence a *G*-structure on *M*. Its structure Lie algebra is $\mathfrak{g}_{\chi_0}^0$.

We can consider $P_L^2 \subseteq F^2(M)$ as a principal fibre bundle over P_L^1 with structure Lie algebra $\mathfrak{g}_{x_0}^1$, but also as a subbundle of the prolongation $(P_L^1)^{(1)} \to P_L^1$ with structure Lie algebra $\mathfrak{g}^1 \subseteq \mathfrak{g}^{(1)}$. Continuing in this way, we obtain a tower of principal fibre bundles

$$P_L^k \to \dots \to P_L^1 \to M$$

such that $P_L^k = P_L$ and $P_L^{j+1} \to P_L^j$ has structure Lie algebra $\mathfrak{g}_{x_0}^j$. This can be regarded as a higher order *G*-structure.

References

- Ieke Moerdijk and Janez Mrčun. On integrability of infinitesimal actions. Amer. J. Math., 124(3):567–593, 2002.
- [2] Ieke Moerdijk and Janez Mrčun. On the integrability of Lie subalgebroids. Adv. Math., 204(1):101-115, 2006.
- [3] I. M. Singer and Shlomo Sternberg. The infinite groups of Lie and Cartan. I. The transitive groups. J. Analyse Math., 15:1–114, 1965.
- [4] P. Stefan. Integrability of systems of vector fields. J. London Math. Soc. (2), 21(3):544–556, 1980.