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1 Cartan’s first fundamental theorem.

Second lecture on Singer and Sternberg’s 1965 paper [3], by Bas Janssens.

1.1 Introduction

Let M be a smooth connected manifold and let Vec be the sheaf of smooth
vector fields on M . Let L ⊆ Vec be a sheaf of Lie algebras of vector fields,
that is, a subsheaf of Vec that is closed under the Lie bracket. For x ∈ M , let
Lx be the Lie algebra of germs of sections of L around x. It is filtered by the
subalgebras Lx,k of germs that vanish to order k (where we set Lx,k = Lx for
k < 0).

Definition 1.1. We define the formal Lie algebra of L at x by

Lx := lim←−
k

Lk
x,

where Lk
x := Lx/Lx,k is the space of k-jets of sections of L at x.

It is filtered by the subalgebras Lx,k := lim←−n
Lx,k/Lx,n of formal jets that

vanish to order k. If we endow Lx with the inverse limit topology induced by the
norm topology of the (finite dimensional) spaces Lk

x, then Lx becomes a Fréchet
Lie algebra. For every open neighbourhood U of x, the Lie algebra L(U) is a
(not necessarily closed) locally convex subalgebra of Vec(U), and the evaluation
evx : L(U)→ Lx is a morphism of locally convex Lie algebras.

Definition 1.2. We define gx to be the associated graded Lie algebra of Lx.

More explicitly, if we define gk
x to be the kernel of the map Lk+1

x → Lk
x, that

is, the space of k+1-symbols of sections of L at x, then we have gk = Lx,k/Lx,k+1

(in particular, gk
x = {0} for k < −1), so

gx =
∞∏

k=−1

gk.

With respect to the Lie algebra and topology inherited from Lx, the associated
graded Lie algebra gx is a graded Fréchet Lie algebra.

An important example is obtained by taking L = Vec. Then Lx is J∞x :=
lim←−k

Jk
x (TM), the inverse limit of the k-jets at x of sections of the tangent

bundle. Note that J∞ → M is a locally trivial bundle of Fréchet Lie algebras.
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We denote the associated graded Lie algebra gx by Sbx, the inverse limit over the
spaces Sbk

x = Ker(Jk+1
x (TM)→ Jk

x (TM)), equal to Vecx,k/Vecx,k+1, of symbols
of order k + 1. Note that Sbk

x can be canonically identified with Sk+1(T ∗xM)⊗
TxM , and that this identification is a bundle isomorphism. We thus have

Sb =
∞∏

k=−1

Sk+1(T ∗M)⊗ TM

as a locally trivial bundle of graded Fréchet Lie algebras over M .

1.2 Some relevant algebra

In this section, we will see that the fact that Lx is subalgebra of Sbx imposes
severe restrictions on the algebraic structure of Lx.

The coadjoint representation of Sbx on its continuous dual

Sb∗x =
∞⊕

k=−1

Sk+1(TxM)⊗ T ∗xM

yields an action of the universal enveloping algebra U(Sbx) on Sb∗x. The in-
clusion of the abelian Lie algebra TxM = Sb−1

x into Sbx yields an inclusion of
U(Sb−1

x ) = S(TxM) into U(Sbx), hence an action of S(TxM) on Sb∗x.

Proposition 1.3. The coadjoint action of S(TxM) ⊆ U(Sbx) on the contin-
uous dual Sb∗x = S(TxM) ⊗ T ∗xM is induced by the symmetric tensor product
∨ : S(TxM)× S(TxM)→ S(TxM).

Proof. For v ∈ TxM , the adjoint action adv : Sbk
x → Sbk−1

x is given on γ ⊗
w ∈ Sk+1(T ∗M) ⊗ TxM ' Sbk

x by adv(γ ⊗ w) = (ivγ) ⊗ w. The dual of the
annihilation operator iv on S(T ∗xM) :=

∏∞
j=0 S

j(T ∗xM) is the creation operator
u 7→ v ∨ u on S(TxM). Since U(Sb−1

x ) is generated by TxM , the proposition
follows.

Corollary 1.4. The annihilator ann(gx) of gx in Sb∗x is a S(g−1
x )-module.

Proof. For v ∈ g−1
x ⊆ TxM , we have adv(g) ⊆ g. The action of ad∗v on Sb∗x

therefore preserves the subspace ann(gx).

We call L transitive at x ∈M if g−1
x = TxM . Combining Corollary 1.4 with

the Hilbert Basis Theorem and the Artin-Rees Lemma, we obtain the following
theorem.

Theorem 1.5. If L is transitive at x ∈ M , then there exists a k0 ∈ N such
that for all k ≥ k0, the space gk

x ⊆ Sk+1(T ∗xM)⊗ TxM is determined by gk−1
x ⊆

Sk(T ∗xM)⊗ TxM by

gk
x =

(
T ∗xM ⊗ gk−1

x

)
∩

(
Sk+1(T ∗xM)⊗ TxM

)
.

Proof. Since g−1
x = TxM , Corollary 1.4 implies that ann(gx) is a S(TxM)-

submodule of the finitely generated S(TxM)-module Sb∗x = S(TxM) ⊗ T ∗xM .
By the Hilbert Basis Theorem, ann(gx) is finitely generated itself, and the Artin-
Rees Lemma then implies that the filtration of ann(gx) is essentially m-adic for
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the maximal ideal m =
⊕∞

j=1 S(TxM) of S(TxM). Since S(TxM) and gx are
graded, there exists a k0 ∈ N such that for all k ≥ k0, we have

ann(gk) = TxM ∨ ann(gk−1
x ) . (1)

This implies that for sufficiently large values of k, the space gk−1
x determines

gk. Dualising equation (1), we calculate

gk
x = ann(TxM ⊗ ann(gk−1

x )) ∩ Sk+1(T ∗xM)⊗ TxM

= T ∗xM ⊗ gk−1
x ∩ Sk+1(T ∗xM)⊗ TxM ,

where ann(TxM ⊗ ann(gk−1
x )) is the annihilator of TxM ⊗ ann(gk−1

x ) inside the
tensor algebra T k+1(T ∗xM)⊗ TxM .

In order to formulate this more succinctly, we introduce the notion of a
prolongation.

Definition 1.6. The prolongation of a vector space U ⊆ Hom(V,W ) is the
subspace U (1) ⊆ Hom(V,U) defined by

U (1) = {T ∈ Hom(V,U) ; Tu(v) = Tv(u)∀u, v ∈ V } .

If we identify gk−1 ⊆ Sk(T ∗xM)⊗TxM as a subspace of Hom(TxM,Sk−1(T ∗xM)⊗
TxM), then Theorem 1.5 can be reformulated as follows: if L is transitive at
x ∈ M , then for sufficiently large values of k, we have gk = (gk−1)(1). In this
language, we obtain the following corollary from the proof of Theorem 1.5.

Corollary 1.7. If L is transitive at x ∈M , then gk
x ⊆ (gk−1

x )(1) for all k ∈ N.

Proof. By Corollary 1.4, ann(gx) is a S(TxM)-module, implying ann(gk
x) ⊇

TxM ∨ gk−1
x for all k ∈ N. Repeating the dualisation at the end of the proof of

Theorem 1.5, we obtain gk
x ⊆

(
T ∗xM ⊗ gk−1

x

)
∩

(
Sk+1(T ∗xM)⊗ TxM

)
.

We can drop the requirement that L be transitive at x ∈ M if we assume
the following property:

Definition 1.8. The graded Lie algebra gx is a tower of tableaux starting at k0

if gr+1
x ⊆ (gr

x)(1) for all r ≥ k0.

Note that every transitive gx is a tower of tableaux starting at 0 by the
previous corollary. If L is defined by a regular PDE of order k0, then it is a
tower of tableaux starting at k0.

Corollary 1.9. Let L be such that gx is a tower of tableaux starting at k0.
Then there exists a k ≥ k0 such that gr+1

x = (gr
x)(1) for all r ≥ k.

Proof. The assumption that gr+1
x be contained in (gr

x)(1) for all r ≥ k0 is equiv-
alent to

⊕∞
r=k0

ann(gr
x) being an S(TxM)-submodule of Sb∗x. The proof of

Theorem 1.5, mutatis mutandis, then yields the required result.

Definition 1.10. We will say that L is of order k if gr+1
x = (gr

x)(1) for all r ≥ k.
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1.3 Symmetries of a singular distribution

The kth order frame bundle F k(M) is the manifold of k-jets at zero of local
diffeomorphisms ψ from U ⊆ Rn to ψ(U) ⊆ M . Equipped with the projection
π : F k(M)→M defined by π(jk

0ψ) := ψ(0), it becomes a principal fibre bundle
with structure group Glk(n), the group of k-jets of diffeomorphisms of Rn that
fix 0.

It carries an action by bundle automorphisms of the diffeomorphism group
Diff(M), defined by φ : jk

0ψ 7→ jk
0 (φ ◦ ψ). This yields a Lie algebra homomor-

phism F k : Vec(M)→ Vec(F k(M)). Any sheaf L of Lie algebras of vector fields
on M therefore gives rise to a sheaf F kL of Lie algebras of vector fields on
F k(M). This in turn gives rise to the (singular) distribution ∆k ⊆ TF kM of
values of F kL.

Conversely, given a (singular) distribution ∆ ⊆ TJk(M,M), we define the
sheaf L∆ of infinitesimal symmetries of ∆ by

L∆(U) := {v ∈ Vec(U) ; Im(F k(v)) ⊆ ∆} .

Clearly, L is always a subsheaf of the sheaf of infinitesimal symmetries of the
distribution ∆k obtained from it, L ⊆ L∆k .

Let Jk(M,M) ⇒ M be the groupoid of k-jets of local diffeomorphisms of
M . Since this is a transitive groupoid with a canonical left action on F k(M)
(defined by jk

xφ : jk
xψ 7→ jk

x(φ ◦ ψ)), a choice fx of k-frame yields an identifica-
tion of F k(M) → M with the source fibre of Jk(M,M) ⇒ M over x, and of
Jk(M,M) ⇒ M with the gauge groupoid F k(M)× F k(M)/Glk(n) ⇒ M .

The action of Diff(M) on F k(M) factors through the canonical splitting
homomorphism

Σ: Diff(M)→ Bis(Jk(M,M)) ; Σ(φ)x := jk
xφ

into the group Bis(Jk(M,M)) of bisections. We identify Jk(TM) → M with
the Lie algebroid of the groupoid Jk(M,M) (that is, the pull back by the identity
e : M → Jk(M,M) of the kernel T sJk(M,M) of the differential s∗ : TJk(M,M)→
TM of the source map s). Then the Lie algebra homomorphism Vec(M) →
Γ(Jk(TM)) induced by the splitting homomorphism Σ is precisely the map
v 7→ jk(v). This shows that the distribution ∆k on F k(M) is the image of
Lk ⊆ Jk(TM) under the Lie algebroid action π∗Jk

x → TF k(M). In particular,
F k(v)fx is in ∆k

fx
if and only if jkv is in Lk

x.
We will use this in following lemma, which says that under mild conditions

on L, the sheaves L and L∆k are in fact identical.

Lemma 1.11. Let L be a sheaf of Lie algebras of vector fields such that gx is
a tower of tableaux starting at k0 for all x ∈ M . Suppose that the order of Lx

is bounded by k on M . Suppose also that g∆k is a tower of tableaux starting at
k. Then we have L = L∆k .

If, moreover, L is determined by L in the sense that every v ∈ Vec(U) with
j∞x (v) ∈ Lx for all x ∈ U belongs to L(U), then we have L = L∆k .

Proof. Since L is contained in L∆k , we have L ⊆ L∆k . Because v is in L∆k(U)
if and only if F k(v)fx is in ∆k

fx
for all fx ∈ F k(M), which in turn is the case if

and only if jk
x(v) ∈ Lk

x for all x ∈ U , we have Lk = Lk
∆k . In particular, gr = gr

∆k
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for all r ≤ k. Now gk+r
∆k ⊆ (gk

∆k)(r) for all r > 0 by assumption. We thus find

gk+r
∆k ⊆ (gk

∆k)(r) = (gk)(r) = gk+r ,

the last equality following from the fact that g is of order at most k. Since the
opposite inclusion is clear, we have gr

∆k = gr for all r. From this and from
L ⊆ L∆k , it follows that L = L∆k .

It remains to prove the last statement. We have already seen that L ⊆ L∆k

and L = L∆k . Now every v ∈ L∆k(U) satisfies j∞x (v) ∈ (L∆k)x = Lx for all
x ∈M , hence lies in L(U). Thus L∆k ⊆ L and the sheaves are equal.

The problem of realising L as the sheaf of infinitesimal symmetries of a
finite dimensional geometric object is thus essentially equivalent to the problem
of integrating the singular foliation ∆k.

By the Stefan-Sussman theorem [4, Corollary 1], the singular distribution
∆k is integrable (through every point in Jk(M,M) passes an intgral manifold
of ∆k) if and only if the pushforward exp(tX)∗ : Lk

x → Lk
y of the local flow

exp(tX) along X ∈ L(U) is an isomorphism for all x ∈ Dom(exp(tX)) and
y = exp(tX)(x).

The assumption that g∆k be a tower of tableaux is in this context a plausibe
assumption; if ∆k is sufficiently regular, it follows from the fact that Lk

∆ is
defined by a PDE of order k.

Example 1.12. Let L be the sheaf of vector fields on Rn that vanish at 0. Then
one readily checks that L satisfies the conditions of Lemma 1.11 for k = 0. The
distribution ∆0

x on F 0(M) = M is given by TxRn for x 6= 0 and by {0} for
x = 0. It is clearly integrable and yields the singular foliation of Rn into 0 and
Rn − 0. Lemma 1.11 thus constructs a geometric object (the division of Rn

into {0} and Rn − {0}) from the sheaf L, and yields the somewhat tautologous
statement that every vector field with j0v|0 = 0 belongs to L.

Example 1.13. Let L be the sheaf of vector fields on Rn that vanish on the
x1-axis `. Then gx = Sbx for x /∈ ` and gx =

∑n
i=2 xi · Sbx for x ∈ `. Hence

(gk)(1) is strictly smaller than gk+1 for all k, and Lemma 1.11 does not apply.
Nonetheless, the distribution ∆0 is well defined and integrable, and the foliation
of Rn into Rn − ` and the points {p} ∈ ` determines the sheaf.

1.4 Lie Algebra Sheaves (LAS) of order k

We streamline the process of applying Lemma 1.11 by imposing conditions on
L that insure regularity of ∆k. We call a sheaf of Lie algebras regular of order
k if Lk →M is a smooth vector bundle.

Definition 1.14. We call a sheaf L of Lie algebras of vector fields a Lie Algebra
Sheaf (LAS) of order k if it is regular of order k, if gx is a tower of tableaux
starting at k0 ≤ k and the order of Lx is bounded by k on M , and if L is
determined by L in the sense that j∞x v ∈ Lx for all x ∈ U implies v ∈ L(U).

Remark 1.15. Every sheaf of Lie algebras of vector fields defined by a regular,
linear PDE of order k0 is a LAS of order k for some k ≥ k0.
Remark 1.16. Part of the definition of a LAS in the sense of Singer-Sternberg
[3, Def. 1.8] is regularity of order 0. Our notion of a LAS of order k is therefore
less restrictive.
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The following theorem, which is essentially Cartan’s First Fundamental The-
orem, is a reformulation of Lemma 1.11 for LAS of order k.

Theorem 1.17 (Cartan I for LAS of order k). For every LAS of order k, there
exists a Lie groupoid Gk

L ⇒ M with a locally free action

a : Gk
L s×π F

k(M)→ F k(M)

such that L is the sheaf of symmetries of this action, in the sense that L(U) is
the Lie algebra of all v ∈ Vec(M) such that the vector field F k(v) on F k(M) is
parallel to the Gk

L-orbits.

In other words: every LAS of order k is the sheaf of infinitesimal symmetries
of a locally free groupoid action on the kth order frame bundle.

Proof. The fact that Lk → M is a smooth vector bundle implies that ∆k is a
regular foliation. In particular, L∆k is defined by a PDE of order k, so that g∆k

is a tower of tableaux starting at k. It follows from Lemma 1.11 that L = L∆k .
Since Lk is smooth and L is closed under the Lie bracket, Lk →M is a Lie

subalgebroid of the integrable algebroid Jk(TM). By Prop. 3.4 and 3.5 in [1],
Lk then integrates to a Lie groupoid Gk

L ⇒ M with an immersive morphism
ι : Gk

L → Jk(M,M) of Lie groupoids. (In general, this immersion will be neither
injective nor closed [2].) The free action of Jk(M,M) on F k(M) then yields a
locally free action of Gk

L on F k(M), and v is in L∆k(U) if and only if F k(v) is
tangent to the orbits.

The following is a simple example of a LAS of order 1 which is not a LAS
in the sense of Singer-Sternberg. This shows that Theorem 1.17 applies to a
trictly wider class of sheaves than the ones in [3].

Example 1.18. Let L be the sheaf of Lie algebras of vector fields on M = R2

defined by letting L(U) := R · v|U for v := x1∂x2 − x2∂x1 . If we identify J∞x
with

∏∞
k=−1 S

k+1(R2∗)⊗ R2, we obtain

L(u1,u2) = R · ((u1∂x2 − u2∂x1)⊕ (dx1 ⊗ ∂x2 − dx2 ⊗ ∂x1)) .

Note that L1 → M is a smooth bundle, as are all the Lk with k ≥ 1 and the
bundle of Fréchet spaces L → M . The sheaf L is a LAS of order 1 because,
moreover, gk

x = 0 for k ≥ 1.
Note, however, that none of the maps L0 →M , g−1 →M and g0 →M have

constant rank, so L is not regular of order 0. The groupoid G1
L integrating the

Lie algebroid L0 →M is easily seen to be the action groupoid R2×SO(2) ⇒ R2

with the obvious action on the frame bundle F 1(R2).

This is the general situation for sheaves of Lie algebras that come from group
actions with finite order fixed points.

Corollary 1.19 (Symmetries of a group action). Let G be a connected Lie
group, G y M a Lie group action, and ξ : g → Vec(M) the associated Lie
algebra morphism. Suppose that for every nonzero X ∈ g, all fixed points of ξX
are of order ≤ k0. Then L(U) := {ξX |U ; X ∈ g} is a LAS of order k0 + 1. The
corresponding groupoid Gk

L is the action groupoid G×M ⇒ M with the obvious
action on F k(M).
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Proof. Since the fixed points are of order k0, the action of G ×M on F k(M)
is locally free for k ≥ k0 + 1. Because the vector fields F k(ξX) on F k(M) are
nonvanishing, L is a sheaf and Lk is a smooth subbundle of Jk(TM). Since gr

x

is the kernel of Lr+1 → Lr, it is zero for r ≥ k. It follows that L is a LAS of
order k. The groupoid integrating the Lie algeboid Lk is the action groupoid
with the canonical action on F k(M), so Theorem 1.17 implies that L is the
sheaf of vector fields v such that for each k-frame fx, there exists an X ∈ g such
that F k(v)fx = F k(ξX)fx .

1.5 Transitive sheaves

The situation becomes especially transparent if the sheaves of Lie algebras are
transitive.

Definition 1.20. Let L be a sheaf of Lie algebras of vector fields on a connected
manifold M . Then L is called a transitive Lie Algebra Sheaf if L0

x = TxM for all
x ∈M , if the pushforward exp(tX)∗ : Lx → Ly yields an isomorphism Lx → Ly

for all x, y ∈ M with y = exp(tX)(x) and if L is determined by L in the sense
that j∞x (v) ∈ Lx for all x ∈ U implies v ∈ L(U).

This coincides with the notion of a transitive LAS in the sense of Singer-
Sternberg, cf. [3], def. 1.3, 1.4 and 1.8. We set out to prove that every transitive
LAS is a LAS of finite order in the sense defined before.

Proposition 1.21. For every transitive LAS, the subset L ⊆ J∞ is a smooth
locally trivial bundle of Fréchet Lie algebras over M . The same holds for all
bundles Lk →M .

Proof. Since L is transitive, every x0 ∈ M possesses a neighbourhood U with
a local frame X1, . . . , Xd of sections of L(U). For ~x = (x1, . . . , xd) ∈ Rd suf-
ficiently close to zero, φ~x = exp(x1X1) ◦ . . . ◦ exp(xnXn) is well defined. By
shrinking U if necessary, we obtain a chart κ−1 : Rd ⊇ V → U ⊆ M by
κ−1(~x) = φ~x(x0). The map V × Lx0 → L defined by (~x, Y ) 7→ φ~x ∗Y is a local
trivialisation of L over U and every two such trivialisations differ by a smooth
isomorphism of the trivial bundles V ∩κκ′−1(V ′)×Lx0 → V ′∩κ′κ−1(V )×Lx′

0
.

Since these isomorphisms preserve the filtration, not only L → M but also all
the Lk →M are smooth.

By Theorem 1.5, transitivity of Lx, i.e. the requirement g−1
x = TxM for all

x ∈ M , implies that Lx has finite order. Because all Lx are isomorphic, the
order is locally constant, hence finite. We arrive at the following proposition.

Proposition 1.22. Every transitive LAS is a LAS of finite order that is regular
of order 0. For all k ∈ N, the bundle Lk →M is a transitive Lie algebroid.

We can now apply Theorem 1.17 to obtain a transitive groupoid Gk
L, the

source fibre at of which is a principal fibre bundle over M .

Theorem 1.23 (Cartan I for Transitive LAS). If L is a transitive LAS, then
there exists an immersed principal subbundle PL ⊆ F k(M) whose structure
group has Lie algebra Lx,0/Lx,k+1, such that L is the sheaf of infinitesimal
symmetries of PL, in the sense that v ∈ Vec(U) is in L(U) if and only if F k(v)|p
is in TpPL for all p ∈ PL.
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In other words: every transitive LAS is the sheaf of symmetries of an im-
mersed subbundle of the kth order frame bundle.

Proof. Since Lk is transitive, so is Gk
L ⇒ M , and its source fibre at x0 ∈ M is

the principal fibre bundle Gk
L,∗,x0

→ M . The Lie algebra of its structure group
Gk

L,x0,x0
is the kernel of the anchor Lk

x0
→ L0

x0
. Since ι : Gk

L → Jk(M,M) is an
immersion, the kernel K of the map ι : GL,x0,x0 → Gk

x0,x0
is a closed discrete nor-

mal subgroup of GL,x0,x0 . Now P := Gk
L,∗,x0

/K is a principal fibre bundle with
structure group Gk

L,x0,x0
/K. If we identify the source fibre at x0 of Jk(M,M)

with F k(M), then the equivariant immersion P → F k(M) is injective, and the
distribution ∆k on F k(M) consists of the translates of TP ⊆ TF k(M) by the
structure group Glk(n).

Let us consider the images P j
L of PL under the projection maps πk

j : F k(M)→
F j(M). For each j = 0, . . . , k, we have an inclusion ιj : P j

L ↪→ F j(M). The im-
mersed subbundle P 1

L of F 1(M) is a subbundle of the ‘ordinary’ frame bundle,
hence a G-structure on M . Its structure Lie algebra is g0

x0
.

We can consider P 2
L ⊆ F 2(M) as a principal fibre bundle over P 1

L with
structure Lie algebra g1

x0
, but also as a subbundle of the prolongation (P 1

L)(1) →
P 1

L with structure Lie algebra g1 ⊆ g(1). Continuing in this way, we obtain a
tower of principal fibre bundles

P k
L → · · · → P 1

L →M

such that P k
L = PL and P j+1

L → P j
L has structure Lie algebra gj

x0
. This can be

regarded as a higher order G-structure.
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