A double complex for the Poisson Lie algebra

Bas Janssens

November 2014

Abstract

Let \mathfrak{g} be a Lie algebra over \mathbb{K}. We describe a double complex $\left\{\mathcal{C}^{\bullet \bullet}\right\}$ of \mathbb{K} vector spaces that gives rise to a spectral sequence relating the cohomology rings $H_{\mathrm{LA}}^{\bullet}\left(\mathfrak{g}, S^{m}\left(\mathfrak{g}^{*}\right)\right)$ for different m. We apply this to the Poisson Lie algebra.

1 The Weyl complex

Let \mathfrak{g} be a Lie algebra over \mathbb{K}. We describe a double complex $\left\{\mathcal{C}^{\bullet \bullet}\right\}$ of \mathbb{K} vector spaces that gives rise to a spectral sequence relating the cohomology rings $H_{\mathrm{LA}}^{\bullet}\left(\mathfrak{g}, S^{m}\left(\mathfrak{g}^{*}\right)\right)$ for different m.

For $n \geq m$, we set $A_{n, m}:=\Lambda^{n-m} \mathfrak{g} \otimes S^{m} \mathfrak{g}$ and define $\mathcal{C}^{n, m}:=A_{n, m}^{*}=$ $C_{\mathrm{LA}}^{n-m}\left(\mathfrak{g}, S^{m} \mathfrak{g}^{*}\right)$. Note that this is nonzero only for $m \geq 0, n \geq m$, so that the complex is concentrated on the second octant. Note also that $\bigoplus_{\mathbb{Z}^{2}} \mathcal{A}_{n, m}$ is isomorphic to the tensor product $\Lambda \mathfrak{g} \otimes S \mathfrak{g}$ of the fermionic and bosonic Fock space over \mathfrak{g}, where n is the total number of particles and m is the boson number.

The vertical differential $\delta_{L A}: \mathcal{C}^{n, m} \rightarrow \mathcal{C}^{n+1, m}$ is the differential of Lie algebra cohomology. It is the dual of the map $\delta_{*}^{m}: A^{n+1, m} \rightarrow A^{n, m}$ given by

$$
\begin{aligned}
\delta_{*}^{m}\left(x_{0} \wedge \ldots \wedge x_{n-m}\right) \otimes Y= & \left(\delta_{*}^{0} x_{0} \wedge \ldots \wedge x_{n-m}\right) \otimes Y \\
& +\sum_{i=0}^{n-m}(-1)^{i}\left(x_{0} \wedge \ldots \wedge \hat{x}_{i} \wedge \ldots \wedge x_{n-m}\right)\left(-\operatorname{ad}_{x_{i}}(Y)\right),
\end{aligned}
$$

where $\operatorname{ad}_{x}\left(y_{1} \vee \ldots \vee y_{m}\right):=\sum_{j=1}^{m} y_{1} \vee \ldots \vee\left[x, y_{j}\right] \vee \ldots \vee y_{m}$ is the representation of \mathfrak{g} on $S^{m} \mathfrak{g}$ and

$$
\delta_{*}^{0} x_{0} \wedge \ldots \wedge x_{n}:=\sum_{0 \leq i<j \leq n}(-1)^{i+j}\left[x_{i}, x_{j}\right] \wedge \ldots \wedge \hat{x}_{i} \wedge \ldots \wedge \hat{x}_{j} \wedge \ldots \wedge x_{n}
$$

is the Lie algebra differential with trivial coefficients.
The horizontal differential $\alpha: C^{n, m} \rightarrow C^{n, m+1}$ is defined as the dual of the antisymmetrisation map $\alpha_{*}: A^{n, m+1} \rightarrow A^{n, m}$ defined by

$$
\left(x_{1} \wedge \ldots \wedge x_{n-m-1}\right) \otimes\left(y_{0} \vee \ldots \vee y_{m}\right) \mapsto \sum_{i=0}^{m}\left(x_{1} \wedge \ldots \wedge x_{n-m-1} \wedge y_{i}\right) \otimes\left(y_{0} \vee \ldots \vee \hat{y_{i}} \vee \ldots \vee y_{m}\right) .
$$

One checks that $\alpha_{*}^{2}=0$, for instance by noting that the (i, j) and (j, i) terms in

$$
\alpha_{*}^{2} X \otimes\left(y_{0} \vee \ldots \vee y_{m}\right)=\sum_{i \neq j}\left(X \wedge y_{j} \wedge y_{i}\right) \otimes\left(y_{1} \vee \ldots \vee \hat{y}_{i} \vee \ldots \vee \hat{y}_{j} \vee \ldots y_{m}\right)
$$

cancel.
Lemma 1.1. The horizontal and vertical differentials α and $\delta_{L A}$ on $\mathcal{C}^{\bullet \bullet}$ constitute a double complex, $\delta_{L A} \circ \alpha-\alpha \circ \delta_{L A}=0$.

Proof. We show by explicit calculation that $\delta_{*} \circ \alpha_{*}=\alpha_{*} \circ \delta_{*}$, from which the dual statement in the theorem then follows. For notational convenience, we write $X=x_{0} \wedge \ldots \wedge x_{n-m}$, and $X^{i}=x_{0} \wedge \ldots \wedge \hat{x}_{i} \wedge \ldots x_{n-m}$ for its i th face, $X^{i j}$ where x_{i} and x_{j} are omitted, etc. Similarly, we write $Y=y_{0} \vee \ldots \vee y_{m}$ and Y^{s} for the above with y_{s} omitted. Now

$$
\alpha_{*} X \otimes Y=\sum_{s=0}^{m} X \wedge y_{s} \otimes Y^{s}
$$

and

$$
\begin{aligned}
\delta_{*} \alpha_{*} X \otimes Y= & \sum_{s=0}^{m} \sum_{0 \leq i<j \leq n-m}(-1)^{i+j}\left[x_{i}, x_{j}\right] \wedge X^{i j} \wedge y_{s} \otimes Y^{s} \\
& +\sum_{s=0}^{m} \sum_{i=0}^{n-m}(-1)^{i+n-m+1}\left[x_{i}, y_{s}\right] \wedge X^{i} \otimes Y^{s} \\
& +\sum_{s=0}^{m} \sum_{i=0}^{n-m}(-1)^{i} X^{i} \wedge y_{s} \otimes\left(-\operatorname{ad}_{x_{i}} Y^{s}\right) \\
& +(-1)^{n-m+1} X \otimes \sum_{s=0}^{m}\left(-\operatorname{ad}_{y_{s}} Y^{s}\right) .
\end{aligned}
$$

The last term is proportional to $\sum_{s \neq t}\left[y_{s}, y_{t}\right] \vee Y^{s t}=0$, hence vanishes. In the first term, we recognise $\alpha_{*}\left(\delta_{*}^{0} X\right) \otimes Y$, and the second and third term combine to form $\alpha_{*}\left(\sum_{i=0}^{n+m}(-1)^{i} X^{i} \otimes\left(-\operatorname{ad}_{x_{i}} Y\right)\right)$. This shows that $\delta_{*} \circ \alpha_{*}=\alpha_{*} \circ \delta_{*} 0$.
Lemma 1.2. For \mathbb{K} equal to \mathbb{R} or \mathbb{C}, the differential α is exact, so that the horizontal cohomology of the complex $\mathcal{C}^{\bullet \bullet}$ vanishes.

Proof. Every element $Z \in \Lambda^{n-m} \mathfrak{g} \otimes S^{m} \mathfrak{g}$ is a finite linear combination $Z=$ $\sum_{k=1}^{N} X_{k} \otimes Y_{k}$ of pure tensors, hence contained in $A_{n, m}(V):=\Lambda^{n-m} V \otimes S^{m} V$, with $V \subseteq \mathfrak{g}$ the finite dimensional subspace spanned by the elements of \mathfrak{g} that form the pure tensors $X_{k} \otimes Y_{k}$. It is therefore sufficient to prove the statement (which does not involve the Lie algebra structure) on finite dimensional vector spaces V over \mathbb{K}. We may assume w.l.o.g. that $\mathbb{K}=\mathbb{C}$, because the case $\mathbb{K}=\mathbb{R}$ follows by complexification.

Note that the map α_{*} is not identically zero if $A_{n, m} \neq\{0\}$, because with $X=x_{1} \wedge \ldots \wedge x_{n-m-1} \neq 0$ and $Y=y^{\vee m+1} /(m+1)$! for a vector y not contained in the span of the x_{i}, one has $\alpha_{*}(X \otimes Y)=(X \wedge y) \otimes y^{\vee m} / m!\neq 0$.

If V is of dimension d, then the map $\alpha_{*}: A_{n, m+1} \rightarrow A_{n, m}$ is an intertwiner of $\mathrm{Sl}_{d}(\mathbb{C})$-representations. Now $S^{m} V$ and $\Lambda^{n-m} V$ are irreducible, whereas for $0<$ $m<n$, the representation $\Lambda^{n-m} V \otimes S^{m} V$ decomposes as the direct sum of two irreducible representations, one with highest weight $(m+1) L_{1}+L_{2}+\ldots+L_{n-m}$ and one with highest weight $m L_{1}+L_{2}+\ldots+L_{n-m+1}$, where L_{i} is the weight of the $i^{\text {th }}$ basis vector of the defining representation V. (See e.g. [FH91, §15, Prop. 15.25].)

Since $\alpha_{*}: A_{n, m+1} \rightarrow A_{n, m}$ is a nonzero intertwiner, it must be zero on the representation with highest weight $(m+2) L_{1}+L_{2}+\otimes+L_{n-m-1}$ and an isomorphism on the representation with weight $(m+1) L_{1}+L_{2}+\ldots+L_{n-m}$. But because $\alpha_{*}: A_{n, m} \rightarrow A_{n, m-1}$ is zero on the representation with highest weight $(m+1) L_{1}+L_{2}+\otimes+L_{n-m}$ and an isomorphism on the representation with weight $m L_{1}+L_{2}+\ldots+L_{n-m+1}$, the sequence $A_{n, m+1} \xrightarrow{\alpha_{*}} A_{n, m} \xrightarrow{\alpha_{*}} A_{n, m-1}$ is exact at $A_{n, m}$.

A diagram chase through the lower part of the complex then yields:
Corollary 1.3. For $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$, there is an exact sequence $0 \rightarrow H^{2}(\mathfrak{g}, \mathbb{K}) \rightarrow H^{1}\left(\mathfrak{g}, \mathfrak{g}^{*}\right) \rightarrow\left(S^{2} \mathfrak{g}^{*}\right)^{\mathfrak{g}} \rightarrow H^{3}(\mathfrak{g}, \mathbb{K}) \rightarrow H^{2}\left(\mathfrak{g}, \mathfrak{g}^{*}\right) \rightarrow H^{1}\left(\mathfrak{g}, S^{2} \mathfrak{g}^{*}\right)$.

The sequence continues to $\left(S^{3} \mathfrak{g}^{*}\right)^{\mathfrak{g}}$ and beyond, but is no longer exact. For example, the cohomology of

$$
\begin{equation*}
H^{2}\left(\mathfrak{g}, \mathfrak{g}^{*}\right) \rightarrow H^{1}\left(\mathfrak{g}, S^{2} \mathfrak{g}^{*}\right) \rightarrow\left(S^{3} \mathfrak{g}^{*}\right)^{\mathfrak{g}} \tag{1}
\end{equation*}
$$

in the middle term is not zero, but $H^{4}(\mathfrak{g}, \mathbb{K}) / K$, with K the kernel of the map $\alpha: H^{4}(\mathfrak{g}, \mathbb{K}) \rightarrow H^{3}\left(\mathfrak{g}, \mathfrak{g}^{*}\right)$.

If we replace the differential α by $(-1)^{n-m-1} \alpha$ to make it anticommute with δ_{LA}, we obtain a spectral sequence from the double complex with which one can calculate the lack of exactness. It converges to zero because α_{*} is exact, so we obtain:

Corollary 1.4. For $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$, the spectral sequence associated to the complex $\mathcal{C}^{\bullet \bullet}$ converges to zero, $H_{\alpha}^{p}\left(H_{\mathrm{LA}}^{q} \mathcal{C}^{\bullet \bullet}\right) \Rightarrow{ }_{p} 0$.

The above statement on the sequence (1) can easily be derived from this.

2 The Poisson Algebra

Let $(R, \cdot,\{\cdot,, \cdot\})$ be a commutative \mathbb{K}-algebra (R, \cdot) with a Lie bracket satisfying $\{f, g \cdot h\}=g \cdot\{f, h\}+\{f, g\} \cdot h$. We assume the field \mathbb{K} to be either \mathbb{R} or \mathbb{C}, and all tensor products will be over \mathbb{K} unless stated otherwise.

2.1 An intertwiner $\mu_{*}: S^{m} R \rightarrow S^{m-1} R$

Before, we have used, perhaps implicitly, the fact that both $\Lambda^{n-m} R$ and $S^{m} R$ are modules for the Lie algebra $(R,\{\cdot, \cdot\})$ under the actions

$$
\operatorname{ad}_{F}: f_{1} \wedge \cdots \wedge f_{m-n} \mapsto \sum_{i=1}^{m-n} f_{1} \wedge \cdots \wedge\left\{F, f_{i}\right\} \wedge \cdots \wedge f_{m-n}
$$

and

$$
\operatorname{ad}_{F}: F_{1} \vee \cdots \vee F_{m} \mapsto \sum_{i=1}^{m} F_{1} \vee \cdots \vee\left\{F, F_{i}\right\} \vee \cdots \vee F_{m-n}
$$

respectively. Now, we note that both $\Lambda^{n-m} R$ and $S^{m} R$ are also modules for the algebra (R, \cdot) under the respective actions

$$
M_{F}: f_{1} \wedge \cdots \wedge f_{m-n} \mapsto \sum_{i=1}^{m-n} f_{1} \wedge \cdots \wedge F \cdot f_{i} \wedge \cdots \wedge f_{m-n}
$$

and

$$
M_{F}: F_{1} \vee \cdots \vee F_{m} \mapsto \sum_{i=1}^{m} F_{1} \vee \cdots \vee F \cdot F_{i} \vee \cdots \vee F_{m-n}
$$

The actions of (R, \cdot) and $(R,\{\cdot, \cdot\})$ are intertwined by

$$
\begin{equation*}
\operatorname{ad}_{F} \circ M_{G}-M_{G} \circ \operatorname{ad}_{F}=M_{\{F, G\}} . \tag{2}
\end{equation*}
$$

For $m \geq 1$, we define the map

$$
\mu_{*}: S^{m} R \rightarrow S^{m-1} R
$$

by

$$
\mu_{*}: F_{1} \vee \ldots \vee F_{m} \mapsto \sum_{i=1}^{m} M_{F_{i}}\left(F_{1} \vee \ldots \vee \widehat{F}_{i} \vee \ldots \vee F_{m}\right)
$$

This equals

$$
\mu_{*}:\left(F_{1} \vee \ldots \vee F_{m}\right)=2 \sum_{i<j} F_{i} F_{j} \vee F_{1} \vee \ldots \vee \widehat{F}_{i} \vee \ldots \vee \widehat{F}_{j} \vee \ldots \vee F_{m}
$$

For the map μ_{*}, we have the following result.
Proposition 2.1. For $m \geq 1$, the map $\mu_{*}: S^{m} R \rightarrow S^{m-1} R$ is an intertwiner of $(R,\{\cdot, \cdot\})$-modules. Consequently, its dual $\left(\mu_{*}\right)^{*}:\left(S^{m-1} R\right)^{*} \rightarrow\left(S^{m} R\right)^{*}$ is an intertwiner too, and the induced map $\mu: \mathcal{C}^{n, m-1} \rightarrow \mathcal{C}^{n, m}$, defined as the dual of the map $\operatorname{Id} \otimes \mu_{*}: \Lambda^{n-m} R \otimes S^{m} R \rightarrow \Lambda^{n-m} R \otimes S^{m-1} R$, satisfies $\delta_{L A} \circ \mu=\mu \circ \delta_{L A}$.
Proof. The first statement is a straightforward consequence of equation (2), and the remaining statements follow by dualisation and the fact that Lie algebra (co)homology is functorial in the representation.

Note that μ_{*} neither squares to zero, nor commutes with α_{*}.
Proposition 2.2. The commutator

$$
\left[\alpha_{*}, \mu_{*}\right]: \Lambda^{n-m} R \otimes S^{m} R \rightarrow \Lambda^{n-m+1} R \otimes S^{m-2} R
$$

satisfies

$$
\left[\alpha_{*}, \mu_{*}\right] u \otimes F_{1} \vee \ldots \vee F_{m}=\sum_{i \neq j} u \wedge F_{i} F_{j} \otimes F_{1} \vee \ldots \vee \widehat{F}_{i} \vee \ldots \vee \widehat{F}_{j} \vee \ldots F_{m}
$$

Proof. By polarisation, it suffices to check the case where all F_{i} are the same, say F. Then

$$
\begin{aligned}
\mu_{*} \alpha_{*}\left(u \otimes F^{\vee m}\right)= & m(m-1)(m-2) u \wedge F \otimes F^{2} \vee F^{\vee(m-3)} \\
\alpha_{*} \mu_{*}\left(u \otimes F^{\vee m}\right)= & m(m-1)(m-2) u \wedge F \otimes F^{2} \vee F^{\vee(m-3)} \\
& +m(m-1) u \wedge F^{2} \otimes F^{\vee(m-2)}
\end{aligned}
$$

so the commutator is $m(m-1) u \wedge F^{2} \otimes F^{\vee(m-2)}$ as desired.
Question 2.3. Is there something analogous to μ_{*} that behaves better with respect to α_{*} ? One gets the feeling that the two structures (Lie algebra and commutative algebra) of R should be reflected in two differentials, a Lie algebra differential $\mathcal{C}^{n, m} \rightarrow \mathcal{C}^{n+1, m}$ in the 'antisymmetric direction' and a mirror image $\mathcal{C}^{n, m} \rightarrow \mathcal{C}^{n, m+1}$ in the 'symmetric direction' that consists of μ plus a part in which F_{i} somehow interacts with the (R, \cdot)-module $\Lambda^{n-m} R$. (This part is supposed to compensate for the nonzero commutator of μ and α.) Perhaps somehow related to Hochschild cohomology?

3 Nontrivial classes in $H^{5}(R, \mathbb{R})$ and $H^{5}\left(R, R^{*}\right)$

We assume that $(R,\{\cdot, \cdot\})$ is not perfect, and fix a nontrivial cocycle $\varepsilon: R \rightarrow \mathbb{K}$ with class $[\varepsilon]$ in $H^{1}(R, \mathbb{R}) \simeq H^{0}\left(R, R^{*}\right)$.
Remark 1. The main example we have in mind is the following. Let (M, ω) be a symplectic manifold of dimension $2 d$ and $R=C_{c}^{\infty}(M, \mathbb{R})$ with the usual multiplication and Poisson bracket. Then we have a nontrivial class $[\varepsilon]$ in $H^{1}(R, \mathbb{R}) \simeq H^{0}\left(R, R^{*}\right)$ given by

$$
\varepsilon(F):=\int_{M} F \omega^{d}
$$

This is (up to scaling) the only continuous class, because if ε is a distribution, then $\varepsilon(\{f, g\})=0$ implies $X_{f} \varepsilon=0$ for all Hamiltonian vector fields X_{f}, so that ε is constant.

The map $\varepsilon: R \rightarrow \mathbb{K}$, considered as a 0 -cocycle with values in R^{*}, yields a nontrivial cocycle $\mu^{m-1} \varepsilon$ in $C^{0}\left(R, S^{m} R^{*}\right)$. (In the context of locally convex Lie algebras, one should read $S^{m} R^{*}$ as $\left(S^{m} R\right)^{\prime}$, the continuous dual of $S^{m} R$.) We rescale it to $\psi^{0, m}$ by requiring

$$
\psi^{0, m}\left(F_{1} \vee \ldots \vee F_{m}\right)=\varepsilon\left(F_{1} F_{2} \ldots F_{m}\right)
$$

We consider the 0 -cocycles $\psi^{0, m}$, which reside in $C^{0}\left(R, S^{m} R^{*}\right)$, and chase them to the left in the following diagram, in which the horizontal lines are exact.

Proposition 3.1. There exists a $k \in\{1, \ldots, m-1\}$ such that the cocycle $\psi^{0, m}$ gives rise to a nontrivial class in $H^{2(m-k)-1}\left(R, S^{k} R^{*}\right)$. (The case $k=0$ should be read as $H^{2 m-1}(R, \mathbb{K})$).
Proof. This is a standard diagram chase. Chasing $\psi^{0, m}$ to the left, we produce nonzero cochains $\psi^{1, m-1}, \psi^{3, m-2}, \psi^{5, m-3}$ etc. untill we reach one, say $\psi^{2 r-1, m-r}$, which is closed. This happens for $r=m$ at the latest, because
$\alpha \delta \psi^{2 m-1,0}=0$ implies $\delta \psi^{2 m-1,0}=0$ due to the injectivity of α on $C^{2 m-0}(\mathbb{R}, \mathbb{K})$. If $\psi^{2(m-k)-1, k}$ is exact, say $\delta \gamma^{2(m-k)-2, k}$, then we set $\tilde{\psi}^{2(m-k-1)-1, k+1}:=$ $\psi^{2(m-k+1)-1, k+1}-\alpha \gamma^{2(m-k)-2, k}$, and note that it is nonzero and closed. Continuing in this way, we find a k such that $\tilde{\psi}^{2(m-k)-1, k}$ is nonzero and closed but not exact. This happens for $k=1$ at the latest, because $\tilde{\psi}^{1, m-1}=\delta \gamma^{0, m-1}$ would imply $\psi^{0, m}=\alpha \delta \gamma^{0, m-1}=\delta \alpha \gamma^{0, m-1}=0$.

3.1 Classes induced from $\psi^{0,2}$ in $H^{1}\left(R, R^{*}\right)$ or $H^{3}(R, \mathbb{R})$

We assume that $R=C_{c}^{\infty}(M)$ for a symplectic manifold M of dimension $2 d$, with $\varepsilon(f)=\int_{M} f \omega^{d}$. We define X_{f} by $i_{X_{f}} \omega=d f$, so that $\{f, g\}=i_{X_{f}} i_{X_{g}} \omega$.

Starting from the invariant symmetric bilinear form $\psi^{0,2}\left(F_{1} \vee F_{2}\right)=\varepsilon\left(F_{1} F_{2}\right)$, we obtain, through $\psi^{1,1}(f)(F)=\varepsilon(f F)$, the cocycle $\psi^{3,0}\left(f_{1} \wedge f_{2} \wedge f_{3}\right)=$ $\varepsilon\left(\left\{f_{1}, f_{2}\right\} f_{3}\right)$. (This is the analogue of the canonical class $\kappa(X,[Y, Z])$ for simple Lie algebras, derived from the invariant symmetric bilinear form κ.) The question is now whether $\psi^{3,0}$ is a coboundary.

3.1.1 Noncompact manifolds

Suppose that $\omega=d \theta$ is exact or, equivalently, that (M, ω) admits a vector field E such that $L_{E} \omega=\omega$. (In particular, this implies that M is not compact.) Then

$$
\begin{equation*}
\left[E, X_{f}\right]=X_{E(f)}-X_{f} \tag{3}
\end{equation*}
$$

because

$$
d(E(f)-f)=L_{E} d f-i_{X_{f}} \omega=L_{E} i_{X_{f}} \omega-i_{X_{f}} L_{E} \omega=i_{\left[E, X_{f}\right]} \omega .
$$

We thus have

$$
L_{E}\{f, g\}=\left\{L_{E} f, g\right\}+\left\{f, L_{E} g\right\}-\{f, g\},
$$

as

$$
\begin{aligned}
L_{E}\{f, g\}-\left\{f, L_{E} g\right\}-\left\{L_{E} f, g\right\} & =L_{E} X_{f} g-X_{f} L_{E} g-X_{E(f)} g \\
& =\left[E, X_{f}\right](g)-X_{E(f)} g \\
& =-X_{f} g .
\end{aligned}
$$

We define the cochain $\gamma^{2,0}$ by

$$
\gamma^{2,0}\left(f_{1} \wedge f_{2}\right):=\varepsilon\left(f_{1} L_{E} f_{2}+\frac{d}{2} f_{1} f_{2}\right)
$$

It is skew-symmetric because $L_{E} \omega^{d}=d \omega^{d}$, and $\delta \gamma^{2,0}=-\frac{d+2}{2} \psi^{3,0}$ because

$$
\begin{aligned}
\delta \gamma^{0,2}\left(f_{1} \wedge f_{2} \wedge f_{3}\right)= & \varepsilon\left(f_{1} L_{E}\left\{f_{2}, f_{3}\right\}+\left\{f_{1}, f_{3}\right\} L_{E} f_{2}-\left\{f_{1}, f_{2}\right\} L_{E} f_{3}\right) \\
& +\frac{d}{2} \varepsilon\left(f_{1}\left\{f_{2}, f_{3}\right\}+\left\{f_{1}, f_{3}\right\} f_{2}-\left\{f_{1}, f_{2}\right\} f_{3}\right) \\
= & \left.\varepsilon\left(f_{1} L_{E}\left\{f_{2}, f_{3}\right\}\right)-f_{1}\left\{L_{E} f_{2}, f_{3}\right\}-f_{1}\left\{f_{2}, L_{E} f_{3}\right\}\right) \\
& -\frac{d}{2} \varepsilon\left(f_{1}\left\{f_{2}, f_{3}\right\}\right) \\
= & -\frac{d+2}{2} \psi^{3,0}\left(f_{1} \wedge f_{2} \wedge f_{3}\right) .
\end{aligned}
$$

we renormalise, $\Gamma^{2,0}=-\frac{2}{d+2} \gamma^{2,0}$, and obtain $\widetilde{\psi}^{1,1}:=\psi^{1,1}-\alpha \Gamma^{2,0}$, namely

$$
\widetilde{\psi}^{1,1}(f)(F)=\frac{2}{d+2} \int_{M}\left(f-L_{E} f\right) F \omega^{d} .
$$

According to Proposition (3.1), $\left[\widetilde{\psi}^{1,1}\right]$ is a nontrivial class in $H^{1}\left(R, R^{*}\right)$, the first Lie algebra cohomology with values in the coadjoint representation.
Remark 2. If $R=C_{c}^{\infty}(X)$ where $X=M \times N$ with (M, ω) symplectic and $L_{E} \omega=\omega$, then one finds coupled cocycles in $H^{2}(R, \mathbb{R})$ [NW08]. It would be interesting to see whether this survives for more general Poisson manifolds.

3.1.2 compact manifolds

If M is compact, then certainly ω is not exact. In this case, we obtain a nontrivial class $\left[\psi^{3,0}\right]$ in $H^{3}(R, \mathbb{R})$.

Theorem 3.2. Any derivation $D: R \rightarrow R^{*}$ such that $(f, F) \mapsto D(f)(F)$ is continuous is of the form $D(f)=S(d f)+c \varepsilon(f)$ with $S \in \Omega_{c}^{1}(M)^{\prime}$ a distributional vector field $S^{\mu} \partial_{\mu}$ with constant symplectic divergence $\partial_{\mu} S^{\mu}=c$.

Proof. Joint w. Cornelia, in preparation.
Theorem 3.3. For M compact, the map that takes a singular k-chain into the corresponding distribution valued $n-k$ form in $C^{-\infty}\left(M, \Lambda^{n-k} T^{*} M\right) \simeq \Omega^{k}(M)^{\prime}$ induces an isomorphism between singular homology in degree k and distribution valued De Rham cohomology in degree $n-k$.

Proof. Cf. [Mel11].
Corollary 3.4. Let M be compact and $\gamma \in \Omega^{k}(M)$ closed. If there exists a $\beta \in C^{-\infty}\left(M, \Lambda^{k-1} T^{*} M\right)$ such that $\gamma=d \beta$, then we also have $\gamma=d \beta^{\prime}$ for some smooth β^{\prime}.

Proof. Every closed γ is cohomologous to the distribution valued k-form induced by its Poincaré dual.

Proposition 3.5. For M compact, the image of $\alpha: H^{1,1}\left(R, R^{*}\right) \rightarrow\left(S^{2} R^{*}\right)^{R}$ is zero.

Proof. Since $\psi^{1,1}(f, F)=D(f)(F)$, we have $\alpha \psi^{1,1}\left(F_{1}, F_{2}\right)=D\left(F_{1}\right)\left(F_{2}\right)+$ $D\left(F_{2}\right)\left(F_{1}\right)$. With $D(F)=S^{\mu}\left(\partial_{\mu} F\right)$, we have $\alpha \psi^{1,1}\left(F_{1}, F_{2}\right)=S^{\mu}\left(\partial_{\mu}\left(F_{1} F_{2}\right)\right)$, which equals $c \int_{M} F_{1} F_{2} \omega^{d}$. For compact M, the image $\operatorname{Im}(\alpha) \subseteq\left(S^{2} R^{*}\right)^{R}$ is zero, because a distributional vector field S with symplectic divergence c corresponds with a distributional 1 -form γ with $d \gamma=c \omega$, but these only exist for $c=0$ by the previous Corollary.

Corollary 3.6. The map $\left(S^{2} R^{*}\right)^{R} \rightarrow H^{3,0}(R, \mathbb{R})$ is injective. In particular, the class $\left[\psi^{3,0}\right] \in H^{3}(R, \mathbb{R})$ is nontrivial.

Proof. This follows from Prop 3.5 and the five term exact sequence of Prop. 1.3.

3.2 Classes induced from $\psi^{0,3}$ in $H^{5}(R, \mathbb{K}), H^{3}\left(R, R^{*}\right)$ or $H^{1}\left(R, S^{2} R^{*}\right)$

Here I can still do the diagram chase to the left, but then going to the right is hard because you have to find preimages of δ rather than α, or prove that they don't exist.

3.3 Classes induced from $\psi^{0,5}$ in $H^{7}(R, \mathbb{K})$ or $H^{5}\left(R, R^{*}\right)$

After this warmup exercise, we try to determine which classes are generated by $\psi^{0,4}$. This could be interesting because we know that there is an exceptional class in $H^{7}(R, \mathbb{R})$ [GKF72]. (Also, there are exceptional classes in $H^{9}(R, \mathbb{R})$ (Metoki) and higher (Mikami-Nakae-Kodama), which you can try to hit with $\psi^{0,5}$ and higher. Apparently these are useful for studying transversely symplectic foliations (Kotschick-Morita).) If $\psi^{0,4}$ doesn't hit the Gelfand-Kalinin-Fuks class, then another candidate is Dzhumadil'daev's class in $H^{5}(R, R)$ [Dzh04].

References

[Dzh04] A. S. Dzhumadil'daev. N-commutators. Comment. Math. Helv., 79:516-553, 2004.
[FH91] William Fulton and Joe Harris. Representation theory, volume 129 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1991. A first course, Readings in Mathematics.
[GKF72] I. M. Gel'fand, D. I. Kalinin, and D. B. Fuks. The cohomology of the Lie algebra of Hamiltonian formal vector fields. Funkcional. Anal. i Priložen., 6(3):25-29, 1972.
[Mel11] R. Melrose. A remark on distributions and the De Rham theorem, 2011.
[NW08] Karl-Hermann Neeb and Friedrich Wagemann. The second cohomology of current algebras of general Lie algebras. Canad. J. Math., 60(4):892-922, 2008.

