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Abstract

Let g be a Lie algebra over K. We describe a double complex {C**} of K-
vector spaces that gives rise to a spectral sequence relating the cohomology
rings HT A (g,S™(g*)) for different m. We apply this to the Poisson Lie
algebra.

1 The Weyl complex

Let g be a Lie algebra over K. We describe a double complex {C**} of K-
vector spaces that gives rise to a spectral sequence relating the cohomology
rings HY ,(g,5™(g*)) for different m.
For n > m, we set A, = A" Mg ® S™g and define C™™ = A} =
a " (g,5"g"). Note that this is nonzero only for m > 0, n > m, so that
the complex is concentrated on the second octant. Note also that B> A,
is isomorphic to the tensor product Ag ® Sg of the fermionic and bosonic Fock
space over g, where n is the total number of particles and m is the boson number.
The vertical differential 67,4 : C™™ — C**1'™ is the differential of Lie algebra
cohomology. It is the dual of the map 67 : A"tL™ — A™™ given by

S™M(Zo Ao AN Tpe) @Y = (%29 A ... AZp_y) @Y

+ i (=)o Ao AT A o AT )(—ady, (Y)),
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where ad, (y1 V... Vyn) = 27:1 y1V...V[z,y;]V...Vyp, is the representation
of g on S™g and

Swg Ao A= Y (D) A AEBA ARG A L Ay,
0<i<j<n
is the Lie algebra differential with trivial coefficients.

The horizontal differential ac: C™™ — C™™+1 is defined as the dual of the
antisymmetrisation map a,: A™™*T1 — A™™ defined by

m

(1A . AZr—m—1)Q YoV . NYm) — Z(xl/\. ATt AY)R YoV . VGV Niym)
=0

One checks that o2 = 0, for instance by noting that the (i,5) and (j,) terms in

XD YoV Vym) =D (XAYAy) @@ V... Vi V.. Vi V.. . ym)
i#]



cancel.

Lemma 1.1. The horizontal and vertical differentials o and dp 4 on C**® con-
stitute a double complex, dp o 0o —aodpa = 0.

Proof. We show by explicit calculation that d, o a, = «, o d,, from which the
dual statement in the theorem then follows. For notational convenience, we
write X = 29 A ... A Zpem, and X? = 2o A ... AZ; A...Zn_m for its ith face,
X' where x; and z; are omitted, etc. Similarly, we write Y =y V...V y,, and
Y® for the above with y, omitted. Now
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The last term is proportional to Zs#[ys, y¢] VY5 =0, hence vanishes. In the

first term, we recognise . (6°X) ® Y, and the second and third term combine
to form o (317" (1) X? @ (—ad,,Y)). This shows that 8,00, = a, 06,0. O

Lemma 1.2. For K equal to R or C, the differential o is exact, so that the
horizontal cohomology of the complex C** vanishes.

Proof. Every element Z € A" ™™g ® S™g is a finite linear combination Z =
Z;le Xk, ® Y}, of pure tensors, hence contained in A4,, ,,(V) := A"~V @ S™V,
with V' C g the finite dimensional subspace spanned by the elements of g that
form the pure tensors X ® Yj. It is therefore sufficient to prove the statement
(which does not involve the Lie algebra structure) on finite dimensional vector
spaces V over K. We may assume w.l.o.g. that K = C, because the case K =R
follows by complexification.

Note that the map «, is not identically zero if A, ,, # {0}, because with
X =21A. . AZp—m—1 #0and Y = y¥V™ T /(m+1)! for a vector y not contained
in the span of the x;, one has a, (X ®Y) = (X Ay) @ yV™/m! # 0.

If V is of dimension d, then the map o Ay ;m41 — Ap,m is an intertwiner of
Sl4(C)-representations. Now S™V and A~V are irreducible, whereas for 0 <
m < n, the representation A"~V ® S™V decomposes as the direct sum of two
irreducible representations, one with highest weight (m+1)L1 4+ Lo+. ..+ Ly,
and one with highest weight mL; 4+ Lo + ...+ Lj,— 41, where L; is the weight
of the i*® basis vector of the defining representation V. (See e.g. [FH91, §15,
Prop. 15.25].)



Since o Ay my1 — Ap,m is a nonzero intertwiner, it must be zero on
the representation with highest weight (m 4+ 2)L; + Lo + ® + Ly,—m—1 and an
isomorphism on the representation with weight (m+1)L1+La+. ..+ Ly . But
because o : Ay — Apm—1 is zero on the representation with highest weight
(m+1)L; + Ly + ® + Ly—y, and an isomorphism on the representation with
weight mLqy + Lo + ... + Ly—m+1, the sequence A, pyi1 B Anm i Apm—1
is exact at A, . O

A diagram chase through the lower part of the complex then yields:
Corollary 1.3. For K=R or K = C, there is an exact sequence
0— H*(g,K) — H'(g,9") — (S?¢")? = H*(g,K) — H*(g,0") — H'(g,5%g") -

The sequence continues to (S3g*)? and beyond, but is no longer exact. For
example, the cohomology of

H*(g,0") — H'(g,5%g") — (5°g")® (1)

in the middle term is not zero, but H*(g,K)/K, with K the kernel of the map
a: H*(g,K) — H*(g,9").

If we replace the differential a by (—1)"~""!a to make it anticommute with
dLA, We obtain a spectral sequence from the double complex with which one can
calculate the lack of exactness. It converges to zero because a, is exact, so we
obtain:

Corollary 1.4. For K =R or K = C, the spectral sequence associated to the
complex C** converges to zero, HR(H{,C**) =, 0.

The above statement on the sequence (1) can easily be derived from this.

2 The Poisson Algebra

Let (R, -,{-,,-}) be a commutative K-algebra (R, -) with a Lie bracket satis-
fying {f,g-h} =g-{f,h} +{f, g} - h. We assume the field K to be either R or
C, and all tensor products will be over K unless stated otherwise.

2.1 An intertwiner u,: S"R — S™ 'R

Before, we have used, perhaps implicitly, the fact that both A"~ R and S™R
are modules for the Lie algebra (R,{-, - }) under the actions

adp: LA A fn > S LA AE YA A frun
=1

and

adp: FLV -V Fps Y RV V{F,F}V- -V Fpy.
1=1

respectively. Now, we note that both A"™™R and S™R are also modules for
the algebra (R, -) under the respective actions

m—n

]\4F:fl/\"'/\f’m—n'_> Zfl/\"'/\F'fi/\"'/\fm—n

i=1



and

MF:Fl\/-~-va»—>ZF1V~-~\/F-Fi\/---va,n.

i=1
The actions of (R, -) and (R,{-, - }) are intertwined by
adFOMG—MGoadFZM{Fva}. (2)

For m > 1, we define the map
py: SR — S™IR

by

pt FIV N Fp 5 Y Mp(Fi V... VEV...VF,).
i=1
This equals
L (Flv...VFm):2ZFiFjVFlv...va...\/Fjv...VFm.

i<j

For the map p., we have the following result.

Proposition 2.1. Form > 1, the map p,: STR — S™ 'R is an intertwiner of
(R,{-, - })-modules. Consequently, its dual (j1.)*: (S™*R)* — (S™R)* is an
intertwiner too, and the induced map p: C»™~1 = C™™, defined as the dual of
the map Id®p,: A" ""R®S™R — A" " R®S™ 'R, satisfies a0/t = 106 4.

Proof. The first statement is a straightforward consequence of equation (2), and
the remaining statements follow by dualisation and the fact that Lie algebra
(co)homology is functorial in the representation. O

Note that p. neither squares to zero, nor commutes with a.
Proposition 2.2. The commutator

[OZ* M*] . An—nLR ® S’rnR — An—7n+1R ® SnL—QR
satisfies
[ puJu @ Fy V...V Fpy =Y uAFF; @ FiV...VEV...VF V.. F,.
i#]

Proof. By polarisation, it suffices to check the case where all F; are the same,
say F'. Then

fs s (u @ FY™) m(m —1)(m — 2Ju AN F @ F? v FV(m=3)

Qi (u@ FY™) = m(m—1)(m—2uAF @ F?v FVm=3)
+m(m — LuAF*@ F¥Vm=2
so the commutator is m(m — )u A F? @ FV(m—2) 4 desired. O

Question 2.3. Is there something analogous to p. that behaves better with
respect to a,? One gets the feeling that the two structures (Lie algebra and
commutative algebra) of R should be reflected in two differentials, a Lie algebra
differential C™™ — C"*1™ in the ’antisymmetric direction’ and a mirror image
cvm — Cv™tl in the ’symmetric direction’ that consists of p plus a part
in which F; somehow interacts with the (R, - )-module A"~™R. (This part is
supposed to compensate for the nonzero commutator of p and «.) Perhaps
somehow related to Hochschild cohomology?



3 Nontrivial classes in H°(R,R) and H°(R, R*)

We assume that (R, {-, - }) is not perfect, and fix a nontrivial cocycle e: R — K
with class [¢] in H'(R,R) ~ H°(R, R*).

Remark 1. The main example we have in mind is the following. Let (M, w) be
a symplectic manifold of dimension 2d and R = C°(M,R) with the usual
multiplication and Poisson bracket. Then we have a nontrivial class [¢] in
H'(R,R) ~ H°(R, R*) given by

e(F) = /M Fuw?.

This is (up to scaling) the only continuous class, because if ¢ is a distribution,
then e({f,g}) = 0 implies X e = 0 for all Hamiltonian vector fields X ¢, so that
€ is constant.

The map €: R — K, considered as a 0-cocycle with values in R*, yields a
nontrivial cocycle p™ e in C°(R, S™R*). (In the context of locally convex Lie
algebras, one should read S™R* as (S™R)’, the continuous dual of S™R.) We
rescale it to %™ by requiring

YOV LNV ) =e(FLFy . Fy).

We consider the 0-cocycles 9% which reside in C°(R, S™R*), and chase them
to the left in the following diagram, in which the horizontal lines are exact.

0 —— C*R,K) —2= C*(R,R*) —*= C°(R,S?’R*) *— 0
5 S é

0— CYR,K) —*- CR,R*) —*—— 0
5 5

Proposition 3.1. There exists a k € {1,...,m — 1} such that the cocycle )%™
gives rise to a nontrivial class in H* ™~ (R,S*R*). (The case k = 0 should
be read as H*™ (R, K)).

Proof. This is a standard diagram chase. Chasing %™ to the left, we pro-
duce nonzero cochains ™1, ¢3™m72 h5m=3 etc. untill we reach one, say
2 ~Lm= which is closed. This happens for r = m at the latest, because



adp?m =10 = 0 implies §1p?™ =10 = 0 due to the injectivity of o on C?*™ (R, K).
If 2(m=F)=Lk ig exact, say 672(m=k)=2k then we set ¢p2(m—k-D-Lh+1 .—
2=kt D)=L+l _ 4420m=k)=2.k and note that it is nonzero and closed. Con-
tinuing in this way, we find a k such that 2(m=%)~L* is nonzero and closed
but not exact. This happens for k = 1 at the latest, because ™1 = §,0m—1
would imply ¥%™ = ady%m 1 = fay? ™1 = 0. O

3.1 Classes induced from ¢%? in H'(R, R*) or H3(R,R)

We assume that R = C°(M) for a symplectic manifold M of dimension 2d,
with e(f) = [,, fw?. We define X by ix,w = df, so that {f, g} = ix,ix,w.

Starting from the invariant symmetric bilinear form ¢%2(FyVFy) = e(Fy Fy),
we obtain, through ¥%!(f)(F) = e(fF), the cocycle ¥>°(f1 A fa A f3) =
e({f1, f2}f3). (This is the analogue of the canonical class (X, [Y, Z]) for sim-
ple Lie algebras, derived from the invariant symmetric bilinear form k.) The
question is now whether 130 is a coboundary.

3.1.1 Noncompact manifolds

Suppose that w = df is exact or, equivalently, that (M,w) admits a vector field
E such that Lgw = w. (In particular, this implies that M is not compact.)
Then

[E,Xf] = Xp) — X7, (3)

because
d(E(f) = f) = Ledf —ix,w = Lpix,w —ix,Lpw = ijp,x,w.

We thus have

as
Le{f,9} —{f. Lrg} —{Lef.g} = LeX;9— X;Lrg— Xgp9g
= [B,X¢)(9) — XEe(p9
= —ng.

We define the cochain 420 by
VOfL A fa) == e(filpf2 + $f112).
It is skew-symmetric because Lpw? = dw?, and 6v*0 = — 2930 because
NP(fiAfaNfs) = e(filp{fa f3} + {f1, fs}Lufs — {f1, f2}Lufs)
+5e(fi{fas fo} + {1, fa}fo = {1, fo) fo)

= e(fiLe{f2 f3}) — fi{Lef2 f3} — fi{fe, LEf3})
—Le(fi{f2 f3})

= —B2P3O(fi A fa A fs).
we renormalise, 20 = 7%4_272,0, and obtain 1! = bl — aT'20, namely
- 2
1,1 d
Yf)(F) = —— — Lef)Fu?.
PHOE) = 1o [ - LenR



According to Proposition (3.1), [1)*1] is a nontrivial class in H*(R, R*), the first
Lie algebra cohomology with values in the coadjoint representation.

Remark 2. If R = C°(X) where X = M x N with (M,w) symplectic and
Lpw = w, then one finds coupled cocycles in H?(R,R) [NWO0S]. It would be
interesting to see whether this survives for more general Poisson manifolds.

3.1.2 compact manifolds

If M is compact, then certainly w is not exact. In this case, we obtain a nontrivial
class [¢*9] in H3(R,R).

Theorem 3.2. Any derivation D: R — R* such that (f,F) — D(f)(F) is
continuous is of the form D(f) = S(df)+ce(f) with S € QL(M)" a distributional
vector field S*0,, with constant symplectic divergence 0,,5" = c.

Proof. Joint w. Cornelia, in preparation. O

Theorem 3.3. For M compact, the map that takes a singular k-chain into the
corresponding distribution valued n —k form in C~°° (M, A"~*T*M) ~ QF (M)’
induces an isomorphism between singular homology in degree k and distribution
valued De Rham cohomology in degree n — k.

Proof. Cf. [Melll]. O

Corollary 3.4. Let M be compact and v € QF(M) closed. If there exists a
B € C=°(M,N*=YT*M) such that v = dj3, then we also have v = df’ for some
smooth 3.

Proof. Every closed -y is cohomologous to the distribution valued k-form induced
by its Poincaré dual. O

Proposition 3.5. For M compact, the image of a: HYY(R, R*) — (S?R*)¥ is
zero.

Proof. Since Y (f,F) = D(f)(F), we have aypb(Fy, Fy) = D(Fy)(Fy) +
D(Fy)(Fy). With D(F) = S*(9,F), we have ap™!(Fy, Fy) = SH(0,(F1F)),
which equals ¢ [;, Fi Fw®. For compact M, the image Im(a) C (S?R*)® is
zero, because a distributional vector field S with symplectic divergence ¢ cor-
responds with a distributional 1-form v with dy = cw, but these only exist for
¢ = 0 by the previous Corollary. O

Corollary 3.6. The map (S?R*)E — H>°(R,R) is injective. In particular,
the class [*°] € H3(R,R) is nontrivial.

Proof. This follows from Prop 3.5 and the five term exact sequence of Prop. 1.3.
O

3.2 Classes induced from ¢°? in H’(R,K), H3(R,R*) or
HY(R, S?R*)
Here I can still do the diagram chase to the left, but then going to the right is

hard because you have to find preimages of § rather than «, or prove that they
don’t exist.



3.3 Classes induced from ¢°° in H(R,K) or H°(R, R*)

After this warmup exercise, we try to determine which classes are generated by
%%, This could be interesting because we know that there is an exceptional
class in H'(R,R) [GKFT72]. (Also, there are exceptional classes in H?(R,R)
(Metoki) and higher (Mikami-Nakae-Kodama), which you can try to hit with
195 and higher. Apparently these are useful for studying transversely symplec-
tic foliations (Kotschick-Morita).) If 9%* doesn’t hit the Gelfand-Kalinin-Fuks
class, then another candidate is Dzhumadil’daev’s class in H°(R, R) [Dzh04].
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