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Abstract
Let g be a Lie algebra over K. We describe a double complex {C•,•} of K-
vector spaces that gives rise to a spectral sequence relating the cohomology
rings H•

LA(g, S
m(g∗)) for different m. We apply this to the Poisson Lie

algebra.

1 The Weyl complex
Let g be a Lie algebra over K. We describe a double complex {C•,•} of K-
vector spaces that gives rise to a spectral sequence relating the cohomology
rings H•LA(g, Sm(g∗)) for different m.

For n ≥ m, we set An,m := Λn−mg ⊗ Smg and define Cn,m := A∗n,m =

Cn−mLA (g, Smg∗). Note that this is nonzero only for m ≥ 0, n ≥ m, so that
the complex is concentrated on the second octant. Note also that

⊕
Z2 An,m

is isomorphic to the tensor product Λg⊗ Sg of the fermionic and bosonic Fock
space over g, where n is the total number of particles andm is the boson number.

The vertical differential δLA : Cn,m → Cn+1,m is the differential of Lie algebra
cohomology. It is the dual of the map δm∗ : An+1,m → An,m given by

δm∗ (x0 ∧ . . . ∧ xn−m)⊗ Y = (δ0∗x0 ∧ . . . ∧ xn−m)⊗ Y

+

n−m∑
i=0

(−1)i(x0 ∧ . . . ∧ x̂i ∧ . . . ∧ xn−m)(−adxi
(Y )) ,

where adx(y1∨ . . .∨ym) :=
∑m
j=1 y1∨ . . .∨ [x, yj ]∨ . . .∨ym is the representation

of g on Smg and

δ0∗x0 ∧ . . . ∧ xn :=
∑

0≤i<j≤n

(−1)i+j [xi, xj ] ∧ . . . ∧ x̂i ∧ . . . ∧ x̂j ∧ . . . ∧ xn

is the Lie algebra differential with trivial coefficients.
The horizontal differential α : Cn,m → Cn,m+1 is defined as the dual of the

antisymmetrisation map α∗ : An,m+1 → An,m defined by

(x1∧. . .∧xn−m−1)⊗(y0∨. . .∨ym) 7→
m∑
i=0

(x1∧. . .∧xn−m−1∧yi)⊗(y0∨. . .∨ŷi∨. . .∨ym) .

One checks that α2
∗ = 0, for instance by noting that the (i, j) and (j, i) terms in

α2
∗X ⊗ (y0 ∨ . . . ∨ ym) =

∑
i 6=j

(X ∧ yj ∧ yi)⊗ (y1 ∨ . . . ∨ ŷi ∨ . . . ∨ ŷj ∨ . . . ym)
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cancel.

Lemma 1.1. The horizontal and vertical differentials α and δLA on C•,• con-
stitute a double complex, δLA ◦ α− α ◦ δLA = 0.

Proof. We show by explicit calculation that δ∗ ◦ α∗ = α∗ ◦ δ∗, from which the
dual statement in the theorem then follows. For notational convenience, we
write X = x0 ∧ . . . ∧ xn−m, and Xi = x0 ∧ . . . ∧ x̂i ∧ . . . xn−m for its ith face,
Xij where xi and xj are omitted, etc. Similarly, we write Y = y0 ∨ . . .∨ ym and
Y s for the above with ys omitted. Now

α∗X ⊗ Y =

m∑
s=0

X ∧ ys ⊗ Y s

and

δ∗α∗X ⊗ Y =

m∑
s=0

∑
0≤i<j≤n−m

(−1)i+j [xi, xj ] ∧Xij ∧ ys ⊗ Y s

+

m∑
s=0

n−m∑
i=0

(−1)i+n−m+1[xi, ys] ∧Xi ⊗ Y s

+

m∑
s=0

n−m∑
i=0

(−1)iXi ∧ ys ⊗ (−adxi
Y s)

+(−1)n−m+1X ⊗
m∑
s=0

(−adysY
s) .

The last term is proportional to
∑
s6=t[ys, yt] ∨ Y st = 0, hence vanishes. In the

first term, we recognise α∗(δ0∗X) ⊗ Y , and the second and third term combine
to form α∗(

∑n+m
i=0 (−1)iXi⊗ (−adxi

Y )). This shows that δ∗ ◦α∗ = α∗ ◦δ∗0.

Lemma 1.2. For K equal to R or C, the differential α is exact, so that the
horizontal cohomology of the complex C•,• vanishes.

Proof. Every element Z ∈ Λn−mg ⊗ Smg is a finite linear combination Z =∑N
k=1Xk ⊗ Yk of pure tensors, hence contained in An,m(V ) := Λn−mV ⊗SmV ,

with V ⊆ g the finite dimensional subspace spanned by the elements of g that
form the pure tensors Xk ⊗ Yk. It is therefore sufficient to prove the statement
(which does not involve the Lie algebra structure) on finite dimensional vector
spaces V over K. We may assume w.l.o.g. that K = C, because the case K = R
follows by complexification.

Note that the map α∗ is not identically zero if An,m 6= {0}, because with
X = x1∧. . .∧xn−m−1 6= 0 and Y = y∨m+1/(m+1)! for a vector y not contained
in the span of the xi, one has α∗(X ⊗ Y ) = (X ∧ y)⊗ y∨m/m! 6= 0.

If V is of dimension d, then the map α∗ : An,m+1 → An,m is an intertwiner of
Sld(C)-representations. Now SmV and Λn−mV are irreducible, whereas for 0 <
m < n, the representation Λn−mV ⊗SmV decomposes as the direct sum of two
irreducible representations, one with highest weight (m+1)L1+L2+ . . .+Ln−m
and one with highest weight mL1 + L2 + . . .+ Ln−m+1, where Li is the weight
of the ith basis vector of the defining representation V . (See e.g. [FH91, §15,
Prop. 15.25].)
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Since α∗ : An,m+1 → An,m is a nonzero intertwiner, it must be zero on
the representation with highest weight (m + 2)L1 + L2 + ⊗ + Ln−m−1 and an
isomorphism on the representation with weight (m+1)L1+L2+. . .+Ln−m. But
because α∗ : An,m → An,m−1 is zero on the representation with highest weight
(m + 1)L1 + L2 + ⊗ + Ln−m and an isomorphism on the representation with
weight mL1 + L2 + . . . + Ln−m+1, the sequence An,m+1

α∗−→ An,m
α∗−→ An,m−1

is exact at An,m.

A diagram chase through the lower part of the complex then yields:

Corollary 1.3. For K = R or K = C, there is an exact sequence

0→ H2(g,K)→ H1(g, g∗)→ (S2g∗)g → H3(g,K)→ H2(g, g∗)→ H1(g, S2g∗) .

The sequence continues to (S3g∗)g and beyond, but is no longer exact. For
example, the cohomology of

H2(g, g∗)→ H1(g, S2g∗)→ (S3g∗)g (1)

in the middle term is not zero, but H4(g,K)/K, with K the kernel of the map
α : H4(g,K)→ H3(g, g∗).

If we replace the differential α by (−1)n−m−1α to make it anticommute with
δLA, we obtain a spectral sequence from the double complex with which one can
calculate the lack of exactness. It converges to zero because α∗ is exact, so we
obtain:

Corollary 1.4. For K = R or K = C, the spectral sequence associated to the
complex C•,• converges to zero, Hp

α(Hq
LAC•,•)⇒p 0.

The above statement on the sequence (1) can easily be derived from this.

2 The Poisson Algebra
Let (R, · , { · , , · }) be a commutative K-algebra (R, · ) with a Lie bracket satis-
fying {f, g · h} = g · {f, h}+ {f, g} · h. We assume the field K to be either R or
C, and all tensor products will be over K unless stated otherwise.

2.1 An intertwiner µ∗ : S
mR→ Sm−1R

Before, we have used, perhaps implicitly, the fact that both Λn−mR and SmR
are modules for the Lie algebra (R, { · , · }) under the actions

adF : f1 ∧ · · · ∧ fm−n 7→
m−n∑
i=1

f1 ∧ · · · ∧ {F, fi} ∧ · · · ∧ fm−n

and

adF : F1 ∨ · · · ∨ Fm 7→
m∑
i=1

F1 ∨ · · · ∨ {F, Fi} ∨ · · · ∨ Fm−n .

respectively. Now, we note that both Λn−mR and SmR are also modules for
the algebra (R, · ) under the respective actions

MF : f1 ∧ · · · ∧ fm−n 7→
m−n∑
i=1

f1 ∧ · · · ∧ F · fi ∧ · · · ∧ fm−n

3



and

MF : F1 ∨ · · · ∨ Fm 7→
m∑
i=1

F1 ∨ · · · ∨ F · Fi ∨ · · · ∨ Fm−n .

The actions of (R, · ) and (R, { · , · }) are intertwined by

adF ◦MG −MG ◦ adF = M{F,G} . (2)

For m ≥ 1, we define the map

µ∗ : SmR→ Sm−1R

by

µ∗ : F1 ∨ . . . ∨ Fm 7→
m∑
i=1

MFi
(F1 ∨ . . . ∨ F̂i ∨ . . . ∨ Fm) .

This equals

µ∗ : (F1 ∨ . . . ∨ Fm) = 2
∑
i<j

FiFj ∨ F1 ∨ . . . ∨ F̂i ∨ . . . ∨ F̂j ∨ . . . ∨ Fm .

For the map µ∗, we have the following result.

Proposition 2.1. For m ≥ 1, the map µ∗ : SmR→ Sm−1R is an intertwiner of
(R, { · , · })-modules. Consequently, its dual (µ∗)

∗ : (Sm−1R)∗ → (SmR)∗ is an
intertwiner too, and the induced map µ : Cn,m−1 → Cn,m, defined as the dual of
the map Id⊗µ∗ : Λn−mR⊗SmR→ Λn−mR⊗Sm−1R, satisfies δLA◦µ = µ◦δLA.
Proof. The first statement is a straightforward consequence of equation (2), and
the remaining statements follow by dualisation and the fact that Lie algebra
(co)homology is functorial in the representation.

Note that µ∗ neither squares to zero, nor commutes with α∗.

Proposition 2.2. The commutator

[α∗, µ∗] : Λn−mR⊗ SmR→ Λn−m+1R⊗ Sm−2R

satisfies

[α∗, µ∗]u⊗ F1 ∨ . . . ∨ Fm =
∑
i 6=j

u ∧ FiFj ⊗ F1 ∨ . . . ∨ F̂i ∨ . . . ∨ F̂j ∨ . . . Fm .

Proof. By polarisation, it suffices to check the case where all Fi are the same,
say F . Then

µ∗α∗(u⊗ F∨m) = m(m− 1)(m− 2)u ∧ F ⊗ F 2 ∨ F∨(m−3)

α∗µ∗(u⊗ F∨m) = m(m− 1)(m− 2)u ∧ F ⊗ F 2 ∨ F∨(m−3)

+m(m− 1)u ∧ F 2 ⊗ F∨(m−2) ,

so the commutator is m(m− 1)u ∧ F 2 ⊗ F∨(m−2) as desired.

Question 2.3. Is there something analogous to µ∗ that behaves better with
respect to α∗? One gets the feeling that the two structures (Lie algebra and
commutative algebra) of R should be reflected in two differentials, a Lie algebra
differential Cn,m → Cn+1,m in the ’antisymmetric direction’ and a mirror image
Cn,m → Cn,m+1 in the ’symmetric direction’ that consists of µ plus a part
in which Fi somehow interacts with the (R, · )-module Λn−mR. (This part is
supposed to compensate for the nonzero commutator of µ and α.) Perhaps
somehow related to Hochschild cohomology?
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3 Nontrivial classes in H5(R,R) and H5(R,R∗)

We assume that (R, {· , · }) is not perfect, and fix a nontrivial cocycle ε : R→ K
with class [ε] in H1(R,R) ' H0(R,R∗).
Remark 1. The main example we have in mind is the following. Let (M,ω) be
a symplectic manifold of dimension 2d and R = C∞c (M,R) with the usual
multiplication and Poisson bracket. Then we have a nontrivial class [ε] in
H1(R,R) ' H0(R,R∗) given by

ε(F ) :=

∫
M

Fωd .

This is (up to scaling) the only continuous class, because if ε is a distribution,
then ε({f, g}) = 0 implies Xfε = 0 for all Hamiltonian vector fields Xf , so that
ε is constant.

The map ε : R → K, considered as a 0-cocycle with values in R∗, yields a
nontrivial cocycle µm−1ε in C0(R,SmR∗). (In the context of locally convex Lie
algebras, one should read SmR∗ as (SmR)′, the continuous dual of SmR.) We
rescale it to ψ0,m by requiring

ψ0,m(F1 ∨ . . . ∨ Fm) = ε(F1F2 . . . Fm) .

We consider the 0-cocycles ψ0,m, which reside in C0(R,SmR∗), and chase them
to the left in the following diagram, in which the horizontal lines are exact.

0 // C3(R,K)
α //

δ

OO

C2(R,R∗)
α //

δ

OO

C1(R,S2R∗)
α //

δ

OO

. . .

0 // C2(R,K)
α //

δ

OO

C1(R,R∗)
α //

δ

OO

C0(R,S2R∗)
α //

δ

OO

0

δ

OO

0 // C1(R,K)
α //

δ

OO

C0(R,R∗)
α //

δ

OO

0

δ

OO

0 // C0(R,K)
α //

δ

OO

0

δ

OO

0

OO

Proposition 3.1. There exists a k ∈ {1, . . . ,m− 1} such that the cocycle ψ0,m

gives rise to a nontrivial class in H2(m−k)−1(R,SkR∗). (The case k = 0 should
be read as H2m−1(R,K)).

Proof. This is a standard diagram chase. Chasing ψ0,m to the left, we pro-
duce nonzero cochains ψ1,m−1, ψ3,m−2, ψ5,m−3 etc. untill we reach one, say
ψ2r−1,m−r, which is closed. This happens for r = m at the latest, because
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αδψ2m−1,0 = 0 implies δψ2m−1,0 = 0 due to the injectivity of α on C2m−0(R,K).
If ψ2(m−k)−1,k is exact, say δγ2(m−k)−2,k, then we set ψ̃2(m−k−1)−1,k+1 :=
ψ2(m−k+1)−1,k+1 − αγ2(m−k)−2,k, and note that it is nonzero and closed. Con-
tinuing in this way, we find a k such that ψ̃2(m−k)−1,k is nonzero and closed
but not exact. This happens for k = 1 at the latest, because ψ̃1,m−1 = δγ0,m−1

would imply ψ0,m = αδγ0,m−1 = δαγ0,m−1 = 0.

3.1 Classes induced from ψ0,2 in H1(R,R∗) or H3(R,R)
We assume that R = C∞c (M) for a symplectic manifold M of dimension 2d,
with ε(f) =

∫
M
fωd. We define Xf by iXf

ω = df , so that {f, g} = iXf
iXg

ω.
Starting from the invariant symmetric bilinear form ψ0,2(F1∨F2) = ε(F1F2),

we obtain, through ψ1,1(f)(F ) = ε(fF ), the cocycle ψ3,0(f1 ∧ f2 ∧ f3) =
ε({f1, f2}f3). (This is the analogue of the canonical class κ(X, [Y,Z]) for sim-
ple Lie algebras, derived from the invariant symmetric bilinear form κ.) The
question is now whether ψ3,0 is a coboundary.

3.1.1 Noncompact manifolds

Suppose that ω = dθ is exact or, equivalently, that (M,ω) admits a vector field
E such that LEω = ω. (In particular, this implies that M is not compact.)
Then

[E,Xf ] = XE(f) −Xf , (3)

because

d(E(f)− f) = LEdf − iXf
ω = LEiXf

ω − iXf
LEω = i[E,Xf ]ω .

We thus have
LE{f, g} = {LEf, g}+ {f, LEg} − {f, g} ,

as

LE{f, g} − {f, LEg} − {LEf, g} = LEXfg −XfLEg −XE(f)g

= [E,Xf ](g)−XE(f)g

= −Xfg.

We define the cochain γ2,0 by

γ2,0(f1 ∧ f2) := ε(f1LEf2 + d
2f1f2).

It is skew-symmetric because LEωd = dωd, and δγ2,0 = −d+2
2 ψ3,0 because

δγ0,2(f1 ∧ f2 ∧ f3) = ε(f1LE{f2, f3}+ {f1, f3}LEf2 − {f1, f2}LEf3)

+d
2ε(f1{f2, f3}+ {f1, f3}f2 − {f1, f2}f3)

= ε(f1LE{f2, f3})− f1{LEf2, f3} − f1{f2, LEf3})
−d2ε(f1{f2, f3})

= −d+2
2 ψ3,0(f1 ∧ f2 ∧ f3) .

we renormalise, Γ2,0 = − 2
d+2γ

2,0, and obtain ψ̃1,1 := ψ1,1 − αΓ2,0, namely

ψ̃1,1(f)(F ) =
2

d+ 2

∫
M

(f − LEf)Fωd .
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According to Proposition (3.1), [ψ̃1,1] is a nontrivial class in H1(R,R∗), the first
Lie algebra cohomology with values in the coadjoint representation.

Remark 2. If R = C∞c (X) where X = M × N with (M,ω) symplectic and
LEω = ω, then one finds coupled cocycles in H2(R,R) [NW08]. It would be
interesting to see whether this survives for more general Poisson manifolds.

3.1.2 compact manifolds

IfM is compact, then certainly ω is not exact. In this case, we obtain a nontrivial
class [ψ3,0] in H3(R,R).

Theorem 3.2. Any derivation D : R → R∗ such that (f, F ) 7→ D(f)(F ) is
continuous is of the form D(f) = S(df)+cε(f) with S ∈ Ω1

c(M)′ a distributional
vector field Sµ∂µ with constant symplectic divergence ∂µSµ = c.

Proof. Joint w. Cornelia, in preparation.

Theorem 3.3. For M compact, the map that takes a singular k-chain into the
corresponding distribution valued n−k form in C−∞(M,Λn−kT ∗M) ' Ωk(M)′

induces an isomorphism between singular homology in degree k and distribution
valued De Rham cohomology in degree n− k.

Proof. Cf. [Mel11].

Corollary 3.4. Let M be compact and γ ∈ Ωk(M) closed. If there exists a
β ∈ C−∞(M,Λk−1T ∗M) such that γ = dβ, then we also have γ = dβ′ for some
smooth β′.

Proof. Every closed γ is cohomologous to the distribution valued k-form induced
by its Poincaré dual.

Proposition 3.5. For M compact, the image of α : H1,1(R,R∗)→ (S2R∗)R is
zero.

Proof. Since ψ1,1(f, F ) = D(f)(F ), we have αψ1,1(F1, F2) = D(F1)(F2) +
D(F2)(F1). With D(F ) = Sµ(∂µF ), we have αψ1,1(F1, F2) = Sµ(∂µ(F1F2)),
which equals c

∫
M
F1F2ω

d. For compact M , the image Im(α) ⊆ (S2R∗)R is
zero, because a distributional vector field S with symplectic divergence c cor-
responds with a distributional 1-form γ with dγ = cω, but these only exist for
c = 0 by the previous Corollary.

Corollary 3.6. The map (S2R∗)R → H3,0(R,R) is injective. In particular,
the class [ψ3,0] ∈ H3(R,R) is nontrivial.

Proof. This follows from Prop 3.5 and the five term exact sequence of Prop. 1.3.

3.2 Classes induced from ψ0,3 in H5(R,K), H3(R,R∗) or
H1(R, S2R∗)

Here I can still do the diagram chase to the left, but then going to the right is
hard because you have to find preimages of δ rather than α, or prove that they
don’t exist.
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3.3 Classes induced from ψ0,5 in H7(R,K) or H5(R,R∗)

After this warmup exercise, we try to determine which classes are generated by
ψ0,4. This could be interesting because we know that there is an exceptional
class in H7(R,R) [GKF72]. (Also, there are exceptional classes in H9(R,R)
(Metoki) and higher (Mikami-Nakae-Kodama), which you can try to hit with
ψ0,5 and higher. Apparently these are useful for studying transversely symplec-
tic foliations (Kotschick-Morita).) If ψ0,4 doesn’t hit the Gelfand-Kalinin-Fuks
class, then another candidate is Dzhumadil’daev’s class in H5(R,R) [Dzh04].
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