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Abstract

Some loose thoughts as to how and when the cohomology of a cosheaf
of Lie algebra can be ascertained locally. Beware! This is by no means a
preprint: the proofs are in various degrees of incompleteness, and state-
ments should not be trusted blindly. Please don’t distribute.

1 Precosheaves of Lie algebras
LetX be a topological space and let O(X) be the collection of open sets, ordered
by inclusion. A precosheaf of Lie algebras is a functor L from O(X) to the
category of Lie algebras: for each open set, we have a Lie algebra L(U), for each
inclusion V ⊂ U we have a Lie algebra homomorphism ιUV : L(V ) → L(U),
the trivial inclusion U ⊆ U corresponds to the identity ιUU = I on L(U), and
W ⊆ V ⊆ U implies ιUV ιVW = ιUW .

A presheaf of vector spaces is a contravariant functor R from O(X) to the
category of vector spaces: for each open set U we have a vector space R(U), for
each inclusion V ⊂ U we have a linear map JUV : R(U)→ R(V ), the inclusion
U ⊆ U yields the identity JUU = I, and W ⊆ V ⊆ U implies JWV JV U = JWU .
A presheaf of representations is a presheaf of vector spaces where each R(U)
carries a representation πU of L(U), compatible in the sense that

JV U · πU ◦ ιUV = πV · JV U .

1.1 Precosheaves of cohomologies
We denote by C•(L,R) the cochain complex of alternating multilinear maps
ψ : Ln → R with differential δ : Cn(L,R)→ Cn+1(L,R) given by

δψ(X0, . . . , Xn) :=

n∑
k=0

(−1)kXk · ψ(X0, . . . , X̂k, . . . , Xn)

+
∑

0≤k<l≤n

(−1)k+lψ([Xk, Xl], X0, . . . , X̂k, . . . , X̂l, . . . , Xn) .

Proposition 1.1 Let L be a precosheaf of Lie algebras, and let R be a presheaf
of representations. Then for each n ∈ N, the assignment U 7→ Cn(L(U), R(U))
constitutes a presheaf of vector spaces, and δ is a morphism of presheaves. In
particular, the assignment U 7→ Hn(L(U), R(U)) constitutes a presheaf of vector
spaces.
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Proof : If V ⊆ U , then the Lie algebra homomorphism ιUV : L(V )→ L(U) in-
duces a chain map ι∗ : C•(L(U), R(U))→ C•(L(V ), R(V )) by (ι∗ψ)(X1, . . . , Xn) :=
JV Uψ(ιUV (X1), . . . , ιUV (Xn)). Indeed, for any n-cochain ψ we have

ι∗δψ(X0, . . . , Xn) =
∑

0≤i<j≤n

(−1)i+jJV Uψ([ιUV (Xi), ιUV (Xj)], ιUV (X0), . . . , î, . . . , ĵ, . . . , ιUV (Xn))

+
∑

0≤k≤n

(−1)kJV UπU (ιUV (Xk))ψ(ιUV (X0), . . . , k̂, . . . , ιUV (Xn))

=
∑

0≤i<j≤n

(−1)i+jψ(ιUV ([Xi, Xj ], ιUV (X0), . . . , î, . . . , ĵ, . . . , ιUV (Xn))

+
∑

0≤k≤n

(−1)kπV (Xk)JV Uψ(ιUV (X0), . . . , k̂, . . . , ιUV (Xn))

= δ ι∗ ψ(X0, . . . , Xn)

We therefore have restriction maps ρV U : Hn(L(U), R(U))→ Hn(L(V ), R(V ))
satisfying the presheaf property ρWV ◦ ρV U = ρWU . �

Remark 1.2 Note that the cohomology is not automatically a sheaf if L is a
cosheaf and R a sheaf. Take for example the (flabby) cosheaf of Lie algebras
L(U) = C∞c (U) with the trivial bracket. The second (continuous) cohomology
with trivial coefficients H2(L(U),R) is simply the space of (continuous) skew-
linear maps ψ : C∞c (U) × C∞c (U) → R. This is a presheaf, but not a sheaf.
The problem here is not gluing, but local identity. If X is covered by U1 and U2,
and ψ1,2 on L(U1,2) are given by, say, ψ1(f, g) :=

∫
U1×U1

f(x)κ1(x, y)g(y)dxdy

and ψ2(f, g) :=
∫
U2×U2

f(x)κ2(x, y)g(y)dxdy, (we assume X to be a mani-
fold equipped with a volume form dx) then if ψ1|U1∩U2 = ψ2|U1∩U2 , we have
κ1(x, y) = κ2(x, y) if x, y ∈ U1 ∩ U2. We can therefore extend κ1 and κ2 to
a kernel κ on X × X, so that the gluing axiom is fulfilled. But this extension
is highly non-unique; the ‘diagonal’ terms κ|U1×U1

and κ|U2×U2
are of course

determined by κ1 and κ2, but the ‘off-diagonal’ terms κ(U1/U2)×(U2/U1) can be
specified more or less at will. There is no hope of satisfying the ‘local identity’.
If it is a sheaf at all, it will be a sheaf over X ×X/S2, not over X.

1.1.1 The Precosheaf over the Spectrum

Given a Lie algebra L, one can obtain a topological space and a precosheaf of
Lie algebras in the following fashion.

Definition 1.3 An ideal P of a Lie algebra L is called prime if for any two
ideals I and J , [I, J ] ⊆ P implies I ⊆ P or J ⊆ P . The prime spectrum
Specp(L) is defined as the set of all proper prime ideals P < L.

We endow the prime spectrum with the ‘Zariski topology’ in the usual fashion:
we declare the closed sets to be those of the form

V (I) := {P ∈ Specp(L) |P ⊇ I}

with I is an ideal in L. We denote the complementary open sets by U(I) :=
Specp(L) − V (I), and we denote by I◦ :=

⋂
P∈V (I) P the biggest ideal J such

that V (J) = V (I).

2



Proposition 1.4 This makes Specp(L) into a topological space. The locale of
open sets is isomorphic to the locale of ‘open’ ideals I = I◦, equipped with the
operations I ∨ J := I + J and I ∧ J := I ∩ J = [I, J ]◦.

Proof : We have a 1 : 1-correspondence between ‘open’ ideals I◦ and open
sets U(I◦).

- Both ∅ = U({0}) = V (L) and Specp(L) = U(L) = V ({0}) are open as
well as closed.

-
⋂
α∈A V (Iα) = V (

∑
α∈A Iα), where

∑
α∈A Iα is the ideal of finite sums

of elements of Iα. Therefore,
⋃
α∈A U(Iα) = U(

∑
α∈A Iα). In particular,

arbitrary intersections of closed sets are closed and arbitrary unions of
open sets are open.

- V (I1)∪V (I2) = V ([I1, I2]) because for any prime ideal P , P ⊃ I1 or P ⊃ I2
is equivalent to P ⊃ [I1, I2]. Finite unions of closed sets are thus closed
and finite intersections of open sets are open: U(I1)∩U(I2) = U([I1, I2]).

This shows that Specp(L) is a topological space, that unions of open sets cor-
respond to sums of ideals and that intersections of open sets correspond to
commutators of ideals.

Finally, P ⊃ I◦ ∩ J◦ implies P ⊃ I ∩ J , which implies P ⊃ [I, J ], which
implies P ⊃ I or P ⊃ J , which implies P ⊃ I◦ or P ⊃ J◦ which implies
P ⊃ I◦ ∩ J◦. Thus I◦ ∩ J◦ = (I ∩ J)◦ = [I, J ]◦. �

The closure of U ⊆ Specp(L) is given by U = {Q ∈ Specp(L) |Q ⊇
⋂
P∈U P},

or U = V (
⋂
P∈U P ). Indeed, the smallest closed set containing U corresponds

to the biggest ideal I such that P ⊇ I for all P ∈ U , which is obviously
⋂
P∈U P .

We’ve already used that intersections and unions of sets correspond to sums
and commutators of ideals. This correspondence is a functor.

Proposition 1.5 The prime spectrum is a covariant functor from the category
of Lie algebras to the category of locales, Specp : Lie→ Loc.

Proof : As a locale, the topological space Specp(L) is isomorphic to the
set of ‘open’ ideals in L with I∨J := I+J and I∧J := [I, J ]◦. (We call an ideal
I in L ‘open’ if I = I◦.) If φ : L→ L′ is a homomorphism of Lie algebras, then
φ−1 : I ′ 7→ φ−1(I ′) maps open sets in Specp(L′) to open sets in Specp(L) in a
way that preserves ∧ and ∨, i.e. it is a morphism of frames. Since the category of
locales is the opposite category of the category of frames, every homomorphism
φ : L→ L′ defines a morphism of locales Specp(φ) : Specp(L)→ Specp(L′). �

Note that although the locales Specp(L) are honest topological spaces and
the Specp(φ) are morphisms of locales, they need not be induced by continu-
ous maps because the inverse image of a prime ideal need not be prime. The
situation is different from that in commutative rings, where the spectrum is
a contravariant functor to the category of topological spaces because inverse
images of prime ideals of commutative algebras are prime.

The closed points in Specp(L) are exactly the maximal ideals. The following
Lemma therefore shows that if L is perfect, then all points are closed (and, in
particular, Specp(L) is a T 1-space).

Proposition 1.6 If L is perfect, [L,L] = L, then every maximal ideal is prime.
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Proof : Let M be a maximal ideal, and let I ∩ J ⊆M for two ideals I and J .
Suppose that neither one is contained inM . By maximality ofM , we then have
I+M = L and J+M = L. Thus [L,L] = [I, J ]+[I,M ]+[M,J ]+[M,M ] ⊆M ,
contradicting the fact that L is perfect. �

Definition 1.7 We call the set Specm(L) of maximal ideals of L the maximal
ideal spectrum. If L is perfect, then Specm(L) inherits the subspace topology
from Specp(L). The closure of U ⊆ Specm(L) with respect to this topology is
U = {M ∈ Specm(L) ;

⋂
Q∈U Q ⊆M}.

For each Lie algebra L, we thus obtain a (flabby) precosheaf of Lie algebras
over Specp(L) by setting L(U) :=

⋂
Q∈Uc Q for each open U , and if L is perfect,

we can do the same with Specm(L).

Remark 1.8 In this level of generality, I do not believe there is sufficient con-
trol over the precosheaves of Lie algebras obtained in this fashion to reach any
localisation results on the cohomology. I’m just stating this because it serves
as motivation, and because in many examples of cosheaves of Lie algebras (e.g.
the cosheaf of compactly supported vector fields), the base space can be recovered
from the global sections in the manner here described. This is Pursell-shanks’
theorem [SP54], which holds in great generality.

1.2 Full cohomology vs. local cohomology
We define the local cohomology of a precosheaf of Lie algebras.

Definition 1.9 A collection {U1, . . . , Un} of sets is called connected if for any
1 ≤ i, j ≤ n, there exist i = i1, i2, . . . , ik−1, ik = j such that Uis ∩ Uis+1

6= ∅ for
all 1 ≤ s ≤ k − 1.

This is not quite equivalent to
⋃n
i=1 Ui being connected, because the Ui are

allowed to be empty or disconnected. (I’m not sure which one of the two is the
proper definition.)

Definition 1.10 A cochain ψ ∈ Cn(L(U), R(U)) is called local if ρU0Uψ(X1, . . . , Xn) =
0 for all Xi ∈ ιUUi(L(Ui)), i = 1, . . . , n, such that {U0, U1, . . . , UN} is not con-
nected. The vector space of local cochains is denoted Cnloc(L(U), R(U)).

Note that for R the constant sheaf R(U) = R with values in the trivial repre-
sentation, this reduces to ‘ψ(X1, . . . , Xn) = 0 for all Xi ∈ ιUUi(L(Ui)) such that
{U1, . . . , UN} is not connected’.

Also note that any collection containing ∅ is disconnected. Consequently,
a local cochain ψ satisfies ψ(X1, . . . , Xn) = 0 as soon as any of the Xi is in
ιU∅L(∅). The above notion of ‘locality’ is a weaker condition than being diagonal
in the sense of Losev, because the latter requires ψ to vanish if ∩n−1i=1 Ui = ∅.

Note that U 7→ Cnloc(L(U), R(U)) is a sub-precosheaf of U 7→ Cn(L(U), R(U)).
The differential δ restricts to map of presheaves Cnloc(L,R) → Cn+1

loc (L,R), be-
cause {[Ui, Uj ], . . . , Ûi, . . . , Ûj , . . . Un} is automatically disconnected whenever
{U0 . . . Un} is. We therefore have a natural map

Hn
loc(L,R)→ Hn(L,R) .
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The aim is to prove that the algebra H∗(L,R) is generated by the image of
Hn

loc(L,R). In case of continuous cocycles on a precosheaf of locally convex
topological Lie algebras, the proper statement is of course that the algebra
generated by the image of H∗loc(L,R) is dense in H∗(L,R).

1.2.1 The local cohomology generates the full cohomology

Let L be a precosheaf of Lie algebras such that [ιXUL(U), ιXV L(V )] = 0 if
U ∩ V = ∅. For brevity, write LX(U) for ιXUL(U).

Lie algebra cohomology, with chains Cn(L(X),R) and differential δ is dual
to Lie algebra homology with chains Cn(L(X),R) = ∧nL(X) and differential
D : Cn → Cn−1 given by D(∧ni=1Xi) =

∑
1≤i<j≤n(−1)i+j [Xi, Xj ] ∧s6=i,j Xs. It

is readily verified that U 7→ C•(L(U),R) is a precosheaf, and that Dk|U ◦ ιUV =
ιUV ◦Dk|V . (We write Dk|U for the restriction of Dk to ∧kL(U), and Dk|X,U
for the restriction of Dk

X to LX(U).)
The key observation in the following is that C•(L(X),R) is a (supercom-

mutative graded) algebra, and if [LX(U), LX(V )] = 0 with X ∈ Cm(LX(U),R)
and Y ∈ Cm′(LX(V ),R), then

D(X ∧ Y ) = D(X) ∧ Y + (−1)deg(X)X ∧D(Y )

because all terms mixing LX(U) and LX(V ) vanish.

Lemma 1.11 Let L be a precosheaf of Lie algebras satisfying [LX(U), LX(V )] =
0 if U ∩ V = ∅. Every cocycle ψn is cohomologous to a cocycle ψ̃n such
that ψ̃n(X ∧ DY ) = 0 and ψ̃n(DX ∧ Y ) = 0 for all X ∈ ∧kιXU (L(U)) and
Y ∈ ∧n−k+1ιXV (L(V )) such that U ∩ V = ∅ and k = 0, . . . , n + 1. If L is
a precosheaf of locally convex topological Lie algebras, ψ̃ can be chosen to be
continuous if ψ is.

Proof : If ψn is a cocycle on L(X), and U, V are disjoint open subsets of X,
then define

γn−1 : D(∧k+1LX(U))×D(∧n−k+1LX(V ))→ R
(DX,DY ) 7→ ψn(X ∧DY ) .

This is well defined. Suppose that DX = DX ′. Then ψn(X ∧DY ) = ψn(X ′ ∧
DY ), because

δψn(X ∧ Y ) = ψn(DX ∧ Y ) + (−1)deg(X)ψn(X ∧DY ) = 0

implies D(X −X ′) = 0 ⇒ ψn(X −X ′ ∧DY ) = 0. This also shows that γ can
be equivalently defined as γn−1(DX,DY ) = (−1)deg(X)+1ψn(DX,Y ).

GAP: THIS ALSO SHOWS THAT γ IS SEPARATELY CONTINUOUS IF
L(U) IS A LOCALLY CONVEX LIE ALGEBRA AND ψ IS CONTINUOUS.
WE NEED THAT IT IS JOINTLY CONTINUOUS IN THAT CASE, I DON’T
SEE WHY IT SHOULD BE.

Because γn−1 : D(∧k+1LX(U)) ×D(∧n−k+1LX(V )) → R is bilinear, it defines
a linear map γn−1 : D(∧k+1LX(U))⊗D(∧n−k+1LX(V ))→ R, and thus a linear
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map γn−1 : D(∧k+1LX(U)) ∧ D(∧n−k+1LX(V )) → R. Our definition of γn−1
depends on k, U and V .

We wish to show that the different versions γn−1k,U,V agree on the overlap of
their domains, so that a single γn−1 on

Span〈DX∧DY ; X ∈ ∧k+1LX(U), Y ∈ ∧n−k+1LX(V ), U∩V = ∅, k = 0, . . . , n+1〉

is well defined. We need to show that if DX ∧ DY = DX ′ ∧ DY ′, then X ∧
DY −X ′ ∧DY ′ is in the image of D.

THERE’S A GAP HERE. PROBABLY USE THE COSHEAF PROPERTY OF
L, OR PERHAPS TRY TO PROVE THAT ∧nL IS A COSHEAF OVER THE
SYMMETRIC PRODUCT Xn/Sn. WE’LL ASSUME THAT THE VARIOUS
γn−1k,U,V ARE COMPATIBLE.

Then extend γn−1 from this linear span to a cocycle Γn−1 on ∧nL(X). If
γn−1 is continuous, one can choose Γn−1 to be continuous by the Hahn-Banach
theorem for locally convex topological vector spaces.

Then for X ∈ ∧kLX(U), Y ∈ ∧n−kLX(V ), one has

δΓn−1(X ∧ Y ) = Γn−1(DX ∧ Y + (−1)deg(X)X ∧DY ) ,

which equals ψn(X∧Y ) if either Y ∈ D(∧n−k+1(LX(V ))) orX ∈ D(∧k+1(LX(U))).
If we define1 ψ̃n := ψn − δΓn−1, then ψ̃n vanishes on D(∧k+1LX(U)) ×

∧n−kL(V ) and on ∧kL(U) × D(∧n−k+1LX(V )) for all open disjoint U, V ⊆
X. In other words, for X ∈ ∧kL(U) and Y ∈ ∧n−kL(V ), we have not only
ψ̃n(DX ∧ Y + (−1)kX ∧DY ) = 0, but we even have

ψ̃n(DX ∧ Y ) = 0 and ψ̃n(X ∧DY ) = 0

separately. �

Theorem 1.12 (Conjectural!) Let L be a precosheaf of nuclear topological
Lie algebras satisfying [LX(U), LX(V )] = 0 if U ∩ V = ∅. Then the algebra
generated by the local cohomology H∗loc(L(X),R) is dense in H∗(L(X),R).

Proof : If ψ̃ is continuous, and vanishes on ∧kL(U) ∧D(∧n−k+1LX(V )) and
on D(∧k+1LX(U))∧∧n−kLX(V ) for all U ∩V = ∅, then it defines a continuous
linear functional ψ̃U,V on

∧kLX(U)/D(∧k+1LX(U)) ⊗ ∧n−k LX(V )/D(∧n−k+1LX(V )) (1)

for all disjoint U, V ⊆ X. (The ⊗ denotes the closure of the tensor product w.r.t.
the topology induced by the inclusion into ∧nL(X).) Now ∧kLX(U)/D(∧k+1LX(U))

is a subspace of ∧kL(X)/D(∧k+1L(X)) and similarly ∧n−kLX(V )/D(∧n−k+1LX(V ))

is a subspace of ∧n−kL(X)/D(∧n−k+1L(X)). Since the ψ̃U,V are compatible for
different pairs U, V ,

1Note that if ψn = δχn−1, then on ImDk+1|U × ImDn−k|V , we have γn−1 = χn−1. Thus
ψ̃n = δ(χ̃n−1), where χ̃n−1 := χn−1 − Γn−1 vanishes on ImDk+1|U × ImDn−k|V .
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THIS IS PRECISELY THE PART WE STILL NEED TO PROVE!

this defines a continuous linear functional on the subspace of

∧kL(X)/D(∧k+1L(X)) ⊗̂ ∧n−k LX(V )/D(∧n−k+1LX(V )) (2)

generated by the spaces (1). Use the Hahn-Banach theorem to extend this to
a continuous linear functional on (2). That (1) is a subspace of 2 requires the
assumption that⊗ and ⊗̂ are compatible. In order to assure this, we assume that
L is a precosheaf of nuclear spaces. Subspaces, tensor products and quotients
by closed subspaces of nuclear spaces are again nuclear, and (E⊗̂F )′ ' E′⊗̂F ′
[Gro52]. Since

(
∧k L(X)/D(∧k+1L(X))

)′ is exactly the space of continuous
closed k-cochains on L(X), we obtain closed k- and n−k-cochains φkα and φn−kα

on L(X) such that the induced element on (2) can be written
∑∞
α=1 φ

k
α⊗φn−kα .

If we now consider the induced element
∑∞
α=1 φ

k
α ∧ φn−kα in ∧nL(X), then it

coincides with ψ̃ on ∧kLX(U) ∧ ∧n−kLX(V ) if U and V are disjoint. That is
to say: ψ̂ := ψ̃ −

∑∞
α=1 φ

k
α ∧ φn−kα vanishes on ∧kLX(U) ∧ ∧n−kLX(V ) for all

disjoint U and V .
If we repeat this procedure for k = 1, . . . , n, in each step respecting the

above property for all the k’s you’ve already handled,

HOW???

then the resulting cocycle ψloc vanishes on ∧kLX(U)∧∧n−kLX(V ) for all disjoint
U and V and for all k, and is therefore local. We see that every continuous
cocycle ψ on L(X) is cohomologous to ψloc +

∑n−1
k=1

∑∞
α=1 φ

k
α∧φn−kα , the sum of

a local cocycle and a term generated by (possibly nonlocal) cocycles of smaller
degree.

The statement now follows by induction: certainly, the first Lie algebra
cohomology is generated by the local cohomology. (It is local itself.) Suppose
that the cohomology up to and including degree n− 1 is generated by the local
cohomology. Then if ψ is any n-cocycle, both ψloc and the φkα are generated by
local cocycles. This means that also ψ is generated by local cocycles. �

Remark 1.13 Apart from the holes in the proof, we also haven’t shown that the
map Hn

loc(L,R)→ Hn(L,R) is injective. This is something you would certainly
like to have.

1.3 A double complex
If U = {Ui ; i ∈ I} is a cover of X, then denote by ČnCm(L,R,U) the space
of Čech cocycles w.r.t. U . If we define Ui0,...,in := Ui0 ∩ . . . Uin , then a
Čech n-cocycle ψ• assigns to each tuple (i0, . . . , in) a Lie m-cocycle ψi0,...,in ∈
Cm(L(Ui0,...,in), R(Ui0,...,in)), in such a way that ψiσ(0) , . . . , iσ(n) = (−1)sg(σ)ψi0,...,in .

Remark 1.14 Although strictly speaking everything in this section ought to
make sense for the precosheaf of arbitrary cochains U 7→ Cn(L(U), R(U)),
the assumptions we will need (especially regarding acyclicity of the presheaf of
cochains) will make sense only in the context of local cohomology. Everywhere
where it says ‘cochain’, one should keep in mind ‘continuous local cochain’.
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The Lie algebra differential δ : ČnCm(L,R,U) → ČnCm+1(L,R,U) com-
mutes with the Čech differential d : ČnCm(L,R,U)→ Čn+1Cm(L,R,U), so we
obtain the following double complex.

0 // C2(L(M), R(M))
ρ

//

δ

OO

Č0C2(L,R,U)
d //

δ

OO

Č1C2(L,R,U)
d //

δ

OO

Č2C2(L,R,U)
d //

δ

OO

0 // C1(L(M), R(M))
−ρ

//

δ

OO

Č0C1(L,R,U)
−d

//

δ

OO

Č1C1(L,R,U)
−d

//

δ

OO

Č2C1(L,R,U)
−d

//

δ

OO

0 // R(M)
ρ

//

δ

OO

Č0R
d //

δ

OO

Č1R
d //

δ

OO

Č2R
d //

δ

OO

0

OO

0

OO

0

OO

0

OO

The occasional minus signs are merely a matter of convention; they make sure
that the two differentials in the complex anticommute rather than commute.

Note that C0(L,R,U) = R, so that the kernel of δ : R(U)→ C1(L(U), R(U))
is Ann(L(U)) := {r ∈ R(U);πU (X)r = 0∀X ∈ L(U)} by definition. The ho-
mology of the nth column (ČnC•(L,R,U), δ) therefore calculates the Lie algebra
cohomology H•(L(Ui0,...,in), R(Ui0,...,in)) on the intersections of the sets in the
cover, with the convention that H0(L(U), R(U)) = Ann(L(U)), the annihilator
Ann(L(U)) := {r ∈ R(U) ; πU (X)r = 0 ∀X ∈ L(U)}. We are interested in the
homology of the 0th column, H•(L(M)), R(M)).

Note also that the homology of the mth row, H•(Č•Cm(L,R,U), d), is zero
at the first spot for all U , (i.e. H−1(Č•Cm(L,R,U), d) = {0} for all U) if and
only if the presheaf of Lie cochains Cm(L,R) satisfies the local identity axiom.
Its cohomology at the second spot is zero for all U , (H0(Č•Cm(L,R,U), d) = {0}
for all U), if and only if the presheaf Cm(L,R) satisfies the gluing axiom. Thus
the presheaf of Lie cochains is a sheaf precisely if H−1(Č•Cm(L,R,U), d) =
H0(Č•Cm(L,R,U), d) = {0} for all U .

We try to extract information from this complex by using the two spectral
sequences that converge to the diagonal complex. We specialise to the case
R = R. Although the bottom nonzero row of the sequence then induces Ep,0∞ =
Hp(M,R) for p ≥ 0, E−1,0∞ = R, these terms are not connected to the rest of
the diagram because δ : ČnR → ČnC1(L,R,U) is simply the zero map. In the
remainder, we therefore set this bottom row to zero.

The cohomology of the ‘total’ complex can now be calculated in two different
ways: by a spectral sequence IE•,•r with second page IE

p,q
2 = Hp(Hq(Čp

′
Cq
′
, δ), (−1)q

′
d),

and by a spectral sequence IIE•,•r with second page IIE
p,q
2 = Hp(Hq(Čp

′
Cq
′
, (−1)q

′
d), δ).

Assume that, for some reason, we knew that the presheaves Cq(L,R) were
in fact acyclic sheaves. (We will show that something like this happens for the
sheaves of local cochains if L is sufficiently ‘soft’.) Then IIE

p,q
2 = 0, because

the cohomology Hp(Č•Cq, d) vanishes. (I mean the cohomology w.r.t. d of each
row in the above complex; vanishing for p = −1, 0 is then the sheaf property
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of Cq(L,R,U), and vanishing for p > 0 is tantamount to acyclicity of these
sheaves.)

The second page of IE•,•r consists of the Čech cohomology of the Lie algebra
cohomology presheaves Hn(L,R), i.e., IE

p,q
2 = Ȟp(Hq(L,R),U). We obtain

(recall that the row corresponding to H0(L,R) is not zero, but irrelevant)

0 . . . . . . . . . . . . . . .

0 Ȟ−1(H3(L,R),U) Ȟ0(H3(L,R),U) Ȟ1(H3(L,R),U) Ȟ2(H3(L,R),U) . . .

0 Ȟ−1(H2(L,R),U) Ȟ0(H2(L,R),U) Ȟ1(H2(L,R),U) Ȟ2(H2(L,R),U) . . .

0 Ȟ−1(H1(L,R),U) Ȟ0(H1(L,R),U) Ȟ1(H1(L,R),U) Ȟ2(H1(L,R),U) . . .

0 0 0 0 0

with a differential d2 of bidegree (2,−1), i.e. a mapping

dp,q2 : Ȟp(Hq(L,R),U)→ Ȟp+2(Hq−1(L,R),U) .

Since this spectral sequence too must converge to zero, we obtain

Proposition 1.15 Let the precosheaf L be such that for each i = 1, . . . , n the
presheaves of Lie cochains with trivial coefficients Ci(L,R) are in fact sheaves,
and suppose that they satisfy Ȟj(Ci(L,R),U) = 0 for all j ≤ 2(n− i). Suppose
also that the cohomology Hn−1(L,R) is a presheaf with Ȟk(Hn−k(L,R),U) =
Ȟk+1(Hn−k(L,R),U) = 0 for k = 1, . . . , n− 1. Then Hn(L,R) is a sheaf.

Proof : Under these conditions, the terms IE−1,nr and IE
0,n
r stabilise at r = 2,

and equal Ȟ−1(Hn(L,R),U) and Ȟ0(Hn(L,R),U) respectively. Indeed, the
conditions have been so chosen that the maps dr of degree (r, 1− r) always map
to zero. Since IEp,qr must converge to zero, the result follows. �

For example, if C1(L,R) is a sheaf, then so is H1(L,R). Suppose that all
Cn(L,R) are acyclic sheaves. Suppose further that L is a sheaf of perfect Lie
algebras (so that H1(L,R) = 0). Then H2(L,R) is a sheaf. This may help
one determine H2(L,R) from local data. If one should find that H2(L,R) is an
acyclic sheaf, then H3(L,R) must be a sheaf. Again, this information may help
one determine it, and if it happens to be an acyclic sheaf, then H4(L,R) must
be a sheaf as well, etc. etc.

2 Cosheaves of Lie algebras
This section is devoted to finding sufficient conditions in order that the presheaf
of local continuous cochains be an acyclic sheaf. We first define cosheaves of Lie
algebras.

9



Definition 2.1 A precosheaf of Lie algebras is called a cosheaf if it further
satisfies the (dual versions of) the local identity axiom and the gluing axiom.

I If {Ui}i∈I is such that ∪IUi = U , then L(U) =
∑
i ιUUiL(Ui).

II If {Ui}i∈I is such that ∪IUi = U , and if
∑
i ιUUi(Xi) = 0, then there exist

Xij ∈ L(Ui ∩ Uj) with Xji = −Xij and Xi =
∑
j ιUiUij (Xij −Xji) .

A cosheaf is called flabby if the ιUV are all injective.

The following property follows from II.

II’ If U = V1 ∪ V2, then ιUV1
(L(V1)) ∩ ιUV2

(L(V2)) = ιUV12
(L(V12)).

For a flabby precosheaf, II also follows from I and II’. A flabby cosheaf can
therefore also be defined as a flabby precosheaf satisfying I and II’.

Proposition 2.2 For a precosheaf of Lie algebras, II implies II’. For a flabby
precosheaf, I and II’ also imply II.

Proof : We prove II’, assuming the ‘co-gluing’ property II. If Y ∈ ιUV1(L(V1))∩
ιUV2(L(V2)), then Y = ιUV1(X1) = ιUV2(−X2) for some X1 ∈ L(V1), X2 ∈
L(V2). According to II, ιUV1

(X1) + ιUV2
(X2) = 0 then implies the existence

of X12 = −X21 ∈ L(U12) such that X1 = ιU1U12
(X12 − X21) and X2 =

ιU2U12
(X21 − X12). Therefore Y = ιUU12

(X12 − X21) ∈ ιUU12
(L(U12)), and

we have ιUV1(L(V1)) ∩ ιUV2(L(V2)) ⊆ ιUV12(L(V12)). The converse inclusion is
obvious.

Now we assume II’, and prove II under the assumption that all the ι’s are
injective. We start with the case N = 2. If ιUU1

(X1) + ιUU2
(X2) = 0, then

with W = U1 ∪ U2 we have ιUW (ιWU1
(X1) + ιWU2

(X2)) = 0, and therefore
ιWU1(X1)+ ιWU2(X2) = 0 by injectivity of ιUW . Thus ιWU1(X1) = −ιWU2(X2)
must be in ιWU12(L(U12)) by II’ and we are done.

We proceed by induction on N . If ιUU1
(X1) + . . .+ ιUUN (XN ) = 0, then set

W := U1 ∪ . . . ∪ UN−1, and write

ιUUN (XN ) = −ιUW (ιWU1
(X1) + . . .+ ιWUN−1

(XN−1)) . (3)

By property II’, we have ιUUN (XN ) ∈ ιUUNL(UN )∩ιUW (L(W )) = ιUW∩UN (L(W∩
UN )), and by property I, we have L(W ∩UN ) =

∑N−1
i=1 ιW∩UNUiN (L(UiN )). Set-

ting ιUUN (XN ) = ιUW∩UN (YN ) and YN =
∑N−1
i=1 ιW∩UNUiN (XiN −XNi) (with

XiN = −XNi), we therefore find

ιUUN (XN ) =

N−1∑
i=1

ιUUiN (XiN −XNi) . (4)

Decomposing ιUUiN = ιUUN ιUNUiN and using the injectivity of ιUUN , we con-
clude

XN =

N−1∑
i=1

ιUNUiN (XiN −XNi) . (5)

We can rewrite equation (3) as

0 =

N−1∑
i=1

ιUUi

(
Xi + ιUiUiN (XiN −XNi)

)
.
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We now apply the induction hypothesis, and obtain Xij = −Xji ∈ L(Uij) (with
i, j ≤ N − 1) such that

Xi + ιUiUiN (XiN −XNi) =

N−1∑
j=1

ιUiUij (Xij −Xji) . (6)

Combining equations (5) and (6), we obtain II. �
We study cosheaves of Lie algebras over X with the following additional

properties.

III Each L(U) is perfect.

IV If V ⊆ U , then ιUV (L(V )) is an ideal in L(U).

V L(∅) = {0}.

In particular, if V1, V2 ⊆ U and V1 ∩ V2 = ∅, then

[ιUV1(L(V1)), ιUV2(L(V2))] = ιU,V1∩V2(L(V1 ∩ V2)) = {0} .

The only nontrivial commutators are the ones between ‘overlapping’ elements,
so properties IV and V insure that the Lie bracket is local in nature. Property
V excludes for example the flabby cosheaf L(U) = g n C∞c (U, g), which has
L(∅) = g as a ‘global’ component.

Note that for the natural precosheaf induced by a perfect Lie algebra L over
Specm(L), II’ and IV are automatically fulfilled. As it is flabby, I implies II. In
this situation, it therefore suffices to check I, V, and III.

2.1 Localisation of cocycles revisited
The following should eventually be subsumed under theorem 1.12. It appears
here separately because the proof is more or less in order, showing that the (im-
portant!) special case of second Lie algebra cohomology with trivial coefficients
does not suffer from the holes in the ‘proof’ of theorem 1.12. Also, it shows how
to handle the case where R is not R.

The conditions I through V suffice to prove that the second Lie algebra
cohomology with trivial coefficients is local.

Lemma 2.3 Let L be a precosheaf of Lie algebras satisfying III, IV and V. Let
R be a presheaf of representations of L which is local in the sense that V ∩V ′ = ∅
implies that JV ′UπU ◦ ιUV is zero. Let ψ be an n-cocycle on L(U) with values in
R(U). If ξi ∈ ιUUi(L(Ui)) for 1 ≤ i ≤ n with V ∩Ui = ∅ for all i and Ui∩Uj = ∅
for i 6= j, then

JV Uψ(ξ1, . . . , ξn) = 0 .

In particular, if R is the trivial representation, then ψ lives on the fat diagonal.
Under the above conditions, we have

ψ(ξ1, . . . , ξn) = 0 .
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Proof : As L(U1) is perfect, we may write X1 =
∑
m[Y α1 , Y

′α
1 ] as a finite sum

of commutators with Y α1 , Y
′α
1 ∈ L(U1). As δψ = 0, we have

∑
0≤k<l≤n

(−1)k+lψ([ξk, ξl], ξ0, . . . , ξ̂k, . . . , ξ̂l, . . . , ξn) = −
n∑
k=0

(−1)kπU (ξk)·ψ(ξ0, . . . , ξ̂k, . . . , ξn)

for all ξ0, . . . , ξn in L(U). If we now substitute ξ0 = ιUU1
(Y α1 ), ξ1 = ιUU1

(Y
′α
1 ),

and ξk = ιUUk(Xk) for k > 1, then using the fact that [ιUUi(L(Ui)), ιUUj (L(Uj))] =
{0} for 1 ≤ i < j ≤ n, we see that the only term surviving on the l.h.s. is
ψ([ιUU1(Y α1 ), ιUU1(Y

′α
1 )], ιUU2(X2), . . . , ιUUn(Xn)). Thus

ψ(ιUU1([Y α1 , Y
′α
1 ]), ιUU2(X2), . . . , ιUUn(Xn)) =

−πU (ιUU1(Y α1 ))ψ(ιUU1(Y
′α
1 ), ιUU2

(X2), . . . , ιUUn(Xn))

+πU (ιUU1
(Y
′α
1 ))ψ(ιUU1

(Y α1 ), ιUU2
(X2), . . . , ιUUn(Xn))

−
n∑
k=2

(−1)kπU (ιUUk(Xk))ψ(ιUU1
(Y α1 ), ιUU1

(Y
′α
1 ), ιUU2

(X2), . . . , X̂k, . . . , ιUUn(Xn)) .

As the r.h.s. is obviously contained in πU
(
ιUU1

(L(U1))+. . .+ιUUn(L(Un))
)
R(U)

for all α, so is ψ(ιUU1(X1), . . . , ιUUn(Xn)). Because V ∩ Ui = ∅, the locality
property of R insures that JV UπU (ιUUi(L(Ui))) is zero. �

Every 1-cochain with coefficients in R is local by definition. The above
shows that closed 2-cochains with values in R are also local, so that H2(L,R) =
H2

loc(L,R) if L satisfies I through V.

2.2 Cohomology as a sheaf
2.2.1 Paracompact Hausdorff spaces

We gather some standard facts on paracompact Hausdorff spaces.

Proposition 2.4 Every closed subset C of a paracompact Hausdorff space X
is paracompact.

Proof : Let V be an open cover of C. Then by definition, each V ∈ V is of the
form V ′ ∩ C for some open V ′ ⊆ X. All these V ′, together with the open set
X−C constitute an open cover of X, which has a locally finite open refinement
W. Intersecting all W ∈ W with C yields a locally finite open refinement of V.

�

Proposition 2.5 Every paracompact Hausdorff space X is regular; if x /∈ C
for C ⊂ X closed, then there exist open U and V with x ∈ U , C ⊂ V and
U ∪ V = ∅. In particular, if x ∈ U for an open U , then there exists an open
neighbourhood V of x with V ⊂ U .

Proof : As X is Hausdorff, we may choose for each c ∈ C disjoint open
neighbourhoods Uc and Vc of x and c respectively. Let S0 be the collection of
all the Vc, supplemented by the set X−C. By paracompactness, S0 has a locally
finite refinement S1. Let S2 be the locally finite cover of C that one obtains
by removing from S1 the sets that do not intersect C. The point x then has
a neighbourhood N intersecting only finitely many sets in S2, say W1 through
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Wn. If Wi lies in Vci , let U := N ∩ ∩ni=1Uci and let V be the union of sets in
S2. Then surely x ∈ U , C ⊂ V and U ∪ V = ∅, as N only intersects the sets
Wi, which have empty intersection with the Uci . �

If V is a covering of X, and A ⊂ X, then the star of A w.r.t. V is defined as
Star(A,V) :=

⋃
{V ∈ V ; V ∩A 6= ∅}. A refinement V of a covering U is called a

star-refinement if for each V ∈ V, there exists a U ∈ U such that Star(V,V) ⊆ U .
The following theorem states that paracompactness can be defined in terms of
star-refinements.

Theorem 2.6 A Hausdorff space X is paracompact if and only if every open
covering of X has an open star-refinement.

Proof : See [Wil70, p. 151]. �

Definition 2.7 A collection {U1, . . . , Un} of sets is called connected if for any
1 ≤ i, j ≤ n, there exist i = i1, i2, . . . , in−1, ik = j such that Uis ∩ Uis+1 6= ∅ for
all 1 ≤ s ≤ k − 1.

The following consequence is immediate, but nonetheless worth noting.

Corollary 2.8 Let X be a paracompact Hausdorff space. Then for every open
cover U of X, and for any n ∈ N, there exists a locally finite cover V such
that for every connected subcollection {V1, . . . , Vn} ⊂ V, the union

⋃n
i=1 Vi is

contained in some U ∈ U .

Proof : Iterate the procedure of getting a star-refinement of U n − 1 times,
and take a locally finite refinement. �

2.2.2 Local cohomology

The following shows that the support of X ∈ L(U) is always contained in a
closed subset of U .

Proposition 2.9 Let L be a precosheaf over a normal space X that satisfies
property I. Let U ⊆ X be open. Then for each X ∈ L(U), there exists an open
U ′ ⊂ U ′ ⊂ U with X ∈ ιUU ′(L(U ′)).

Proof : The collection V = {V ⊂ U ; V ⊂ U} is a cover of U because X is
regular. In view of property I, we can find V1, . . . , VN ∈ V and Xi ∈ L(Vi)

such that X =
∑N
i=1 ιUVi(Xi). Thus X = ιUU ′(Y ) with U ′ =

⋃N
i=1 Vi and

Y =
∑N
i=1 ιU ′Vi(Xi). Clearly, we have U ⊂ U ′ ⊂ U . �

Definition 2.10 A cochain ψ ∈ Cn(L(U), R(U)) is called local if ρU0Uψ(X1, . . . , Xn) =
0 for all Xi ∈ ιUUi(L(Ui)), i = 1, . . . , n, such that {U0, U1, . . . , UN} is not con-
nected. The vector space of local cochains is denoted Cnloc(L(U), R(U)).

Note that for R the constant sheaf R(U) = T with values in the trivial rep-
resentation, this reduces to ‘ψ(X1, . . . , Xn) = 0 for all Xi ∈ ιUUi(L(Ui)) such
that {U1, . . . , UN} is not connected’. Also note that any collection containing
∅ is disconnected. Consequently, a local cochain ψ satisfies ψ(X1, . . . , Xn) = 0
as soon as any of the Xi is in ιU∅L(∅). The above notion of ‘locality’ is a
slightly weaker condition than being diagonal in the sense of Losev. Note that
U 7→ Cnloc(L(U), R(U)) is a sub-precosheaf of U 7→ Cn(L(U), R(U)).
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Lemma 2.11 Let L be a cosheaf of Lie algebras over a paracompact Hausdorff
space, and let R be a sheaf of representations. Then U 7→ Cnloc(L(U), R(U)) is
a sheaf for every n ∈ N.

Proof : The local identity axiom for U 7→ Cnloc(L(U), R(U)) follows from the
property I for the cosheaf L, and from local identity for R. Indeed, let ψ be a
local n-cochain on L(U), let V be an open cover of U such that ι∗UV ψ = 0 for
all V ∈ V. We prove that ψ(X1, . . . , Xn) = 0 for all Xi ∈ L(U).

We would like to have star refinements of V, but as U need not be para-
compact, we will make due with star refinements of V ′ := {V ∩ U ′ ; V ∈ V},
with U ′ ⊂ U ′ ⊂ U a ‘slightly smaller’ set with the property that each of the
Xi is of the form Xi = ιUU ′(Yi) with Yi ∈ L(U ′) (cf. proposition 2.9). As
{V ∩ U ′ ; V ∈ V} is an open cover of the paracompact Hausdorff space U ′, it
allows for a locally finite open n + 1-fold star refinement W in the sense of
corollary 2.8. Then W ′ := {W ∩U ′ ; W ∈ W} is a locally finite open n+ 1-fold
star refinement of V ′.

Using property I, we write each Yi as a finite sum Yi =
∑Ni
ki=1 ιU ′Wki

(Y kii ),
where each Y kii is in L(Wki), and the Wki are in W ′. We then have

JWk0
Uψ(X1, . . . , Xn) =

∑
k1,...,kn

JWk0
Uψ
(
ιUWk1

(Y k11 ), . . . , ιUWkn
(Y knn )

)
.

Since ψ is local, all terms on the right vanish except the ones where {Wk0 ,Wk1 , . . . ,Wkn}
is connected, in which case Wk0 ∪ . . . ∪ Wkn is contained in a single V ∈ V.
Since ι∗UV ψ = 0, these terms must vanish too, and JWk0

Uψ(X1, . . . , Xn) = 0
for all Wk0 . Since the Wk0 cover U ′, the local identity axiom for R then tells
us that JU ′Uψ(X1, . . . , Xn) = 0 for every U ′ with the property that all the
Xi are in ιUU ′(L(U ′)). Now if we choose U ′ ⊆ U ′ ⊆ U ′′ ⊆ U ′′ ⊆ U , then
JU ′′Uψ(X1, . . . , Xn) = 0 because of the above, and J(U−U ′)Uψ(X1, . . . , Xn) = 0

because ψ is local, and U − U ′ is disjoint from the ‘supports’ of the Xi. Using
again the local identity axiom for R, we see that ψ(X1, . . . , Xn) = 0 as required.

The gluing axiom for the U 7→ Cnloc(L(U), R(U)) follows essentially from
property II for the cosheaf L, and from the gluing axiom for R. Let V be a
cover of U , and ψV ∈ Cnloc(L(V ), R(V )) be such that ι∗V V ∩V ′ψV = ι∗V ′V ∩V ′ψV ′

for any V, V ′ ∈ V. We wish to glue these together, i.e. we wish to find a
(necessarily unique) ψU ∈ Cnloc(L(U), T ) such that ι∗UV ψU = ψV .

We fix U ′ ⊂ U ′ ⊂ U , and first glue together the ψV ′ := ι∗V U ′∩V ψV to obtain a
ψU ′ on L(U ′). Again, letW ′ be an n+1-fold star refinement of V ′ (both covers of
U ′), and write Yi =

∑Ni
ki=1 ιU ′Wki

(Y kii ), with Yi ∈ L(U ′) and Y kii in L(Wki). We
define ψk0;k1,...,kn on L(Wk1)× . . .×L(Wkn) to be zero if {Wk0 ,Wk1 , . . . ,Wkn}
is not connected. If it is connected, then

⋃n
i=0Wki ⊆ V ′ for some V ′ ∈ V ′, and

we define ψk0;k1,...,kn to be the restriction of JWk0
V ′ψV ′ . This does not depend

on the choice of V ′; if also
⋃n
i=0Wki ⊆ V ′′, then

⋃n
i=0Wki ⊆ V ′ ∩ V ′, and ψV ′

agrees with ψV ′′ on L(V ′ ∩ V ′′) by assumption. We thus define

ψk0;U ′(Y1, . . . , Yn) :=
∑

k1,...,kn

ψk0;k1,...,kn(Y k11 , . . . , Y knn ) . (7)

We need to check that this is independent of the way we split Yi into ι∗U ′Wki
(Y kii ).

Suppose that also Yi =
∑
li
ι∗U ′Wli

(Y ′
li
i ). Without loss of generality, we can
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assume that the labels li and ki are the same. Then the difference between the
two versions of equation (7) is∑

k1,...,kn

ψk0;k1,...,kn(Y k11 − Y ′
k1
1 , Y

k2
2 , . . . , Y knn )

+ ψk0;k1,...,kn(Y ′
k1
1 , Y

k2
2 − Y ′

k2
2 , Y

k3
3 , . . . , Y knn )

+ . . .

+ ψk0;k1,...,kn(Y ′
k1
1 , . . . , Y

′kn−1

n−1 , Y
kn
n − Y ′knn ) .

Let Zki := Y ki − Y ′
k
i . Then

∑
ki
ιU ′Wki

(Zkii ) = 0, so that the property II for L
yields Zkli ∈ L(Wk ∩Wl) such that Zkli = −Zlki and Zki =

∑
l ιWkWk∩Wl

(Zkli ).
Consequently, each nonzero term

ψk0;k1,...,kn(Y ′
k1
1 , . . . , ιWki

Wki
∩Wli

(Zkilii ) . . . , Y knn )

coming from ψk0;k1,...,kn(Y ′
k1
1 , . . . , Z

ki
i . . . , Y knn ) is compensated by a term

ψk0;k1,...,li,...,kn(Y ′
k1
1 , . . . , ιWli

Wki
∩Wli

(−Zkilii ), . . . , Y knn )

coming from ψk0;k1,...,kn(Y ′
k1
1 , . . . , Z

li
i . . . , Y

kn
n ). Indeed, if the former is nonzero,

then the collection {Wk0 , . . . ,Wki∩Wli , . . .Wkn} is connected (and in particular
Wki ∩ Wli 6= ∅), so that {Wk0 , . . . ,Wkn} ∪ {Wli} is connected. Therefore,
Wli ∪ (Wk0 ∪ . . . ∪Wkn) is contained in a single set V ′ ∈ V ′ (remember that V ′
was an n+ 1-fold star refinement rather than an n-fold), and ψk0;k1,...,kn agrees
with ψk0;k1,...,li,...,kn . Every nonzero term in the difference is thus cancelled
by another term, and ψk0;U ′(Y1, . . . , Yn) is a well defined element of R(Wk0). If
Wk0∩Wk′0

6= ∅, thenWk0∪Wk′0
⊆ V ′ for some V ′ ∈ V, so that ψk0;U ′(Y1, . . . , Yn)

and ψk′0;U ′(Y1, . . . , Yn) agree on Wk0 ∩Wk′0
. We then use the gluing axiom on

R to assemble the ψk0;U ′(Y1, . . . , Yn) into a single well defined ψU ′(Y1, . . . , Yn).
It is clear from the definition that ι∗U ′V ′ψU ′ = ψV ′ . Indeed, let all the Yi be

in ιU ′V ′L(V ′). Then theW ∩V ′ withW ∈ W ′ cover V ′, and the Y kii can be cho-
sen as ιWki

Wki
∩V ′Y

′ki
i with Y ′kii ∈ L(Wki ∩ V ′). Assume that {Wk0 , . . . ,Wkn}

is connected. If
⋃n
i=0Wki ⊆ V ′′, then

⋃n
i=0(Wki ∩ V ′) ⊆ V ′′ ∩ V ′, so that

JV ′∩Wk0
V ′′ψV ′′(ιV ′′Wk1

Y k11 , . . . , ιV ′′Wkn
Y knn ) is equal to JV ′∩Wk0

V ′ψV ′(ιV ′Wk1
∩V ′(Y

′k1
1 ), . . . , ιV ′Wkn∩V ′(Y

′kn
n ))

due to the requirement that ψV ′ and ψV ′′ agree on the overlap of V ′ and V ′′.
This means that if the Yi come from V ′, then all the ψk0;k1,...,kn(Y k11 , . . . , Y knn )
can be expressed in terms of ψV ′ , so that ι∗U ′V ′ψU ′ = ψV ′ .

We have shown that the ψV ′ glue together to a ψU ′ on L(U ′). In order
to extend this to U , we need property I. Because of ‘local identity’, the ψU ′
is unique, and does not depend on our choice of refinement. If Xi is in L(U)
for i = 1, . . . , n, we choose U ′ ⊂ U ′ ⊂ U such that Xi = ιUU ′(Yi), and set
ψ(X1, . . . , Xn) := ψU ′(Y1, . . . , Yn). This does not depend on our choice of U ′; if
U ′′ is another possibility, then U ′′′ = U ′ ∩ U ′′ is yet another, and ι∗U ′U ′′′ψU ′ =
ι∗U ′′U ′′′ψU ′′ = ψU ′′′ , because of the uniqueness of ψU ′′′ . �

Proposition 2.12 Let L be a cosheaf of Lie algebras over a paracompact Haus-
dorff space satisfying IV. Let R be a sheaf of representations with the property
that V ∩V ′ = ∅ implies JV ′UπU (ιUV (XV )) = 0. Then δU : Cnloc(L(U), R(U))→
Cn+1

loc (L(U), R(U)) is a homomorphism of sheaves.
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Proof : We already know that δU is a morphism of presheaves Cn(L(U), R(U))→
Cn+1(L(U), R(U)), and we need only show that the image of a local cocycle is
local. Consider JU−1Uδψ(X0, . . . , Xn) with Xi ∈ ιUUi(L(Ui)), and suppose that
{U−1, . . . , Un} is not connected.

Consider first the terms of the form JU−1Uψ([Xi, Xj ], X0, . . . , X̂i, . . . , , X̂j , . . . , Xn).
Because of property IV, [ιUi∪UjUi(L(Ui)), ιUi∪UjUj (L(Uj))] is contained in ιUi∪UjUi(L(Ui))∩
ιUi∪UjUj (L(Uj)). Because of property II, ιUi∪UjUi(L(Ui)) ∩ ιUi∪UjUj (L(Uj)) is
contained in ιUi∪UjUi∩Uj (L(Ui∩Uj)). But {Ui∩Uj , U−1, . . . , Ûi, . . . , Ûj , . . . , Un}
cannot be connected: if Ui ∩Uj = ∅, then this is clear. if Ui ∩Uj 6= ∅, then this
follows from the fact that {U−1, . . . , Un} was not connected. So either way, the
terms of the form JU−1Uψ([Xi, Xj ], X0, . . . , X̂i, . . . , , X̂j , . . . , Xn) vanish.

Now suppose that any term of the form JU−1UπU (ιUUi(Xi))ψ(X0, . . . , X̂i, . . . , Xn)

is nonzero. Then {U0, . . . , Ûi, . . . , Un} is connected. Also, {U−1, Ui} must be
connected because of the ‘locality’ condition we imposed on R. And finally,
{U−1∪Ui, U0, . . . , Ûi, . . . , Un} is connected because JU−1∪UiUπU (ιUU−1∪Ui(ιU−1∪UiUiXi))ψ(X0, . . . , X̂i, . . . , Xn)

is nonzero, and equal to the expression πU−1∪Ui(ιU−1∪UiUiXi)JU−1∪UiUψ(X0, . . . , X̂i, . . . , Xn).
All of this entails that {U−1, . . . , Un} is connected, contrary to our assumption.

�
This is in general not sufficient to prove that the local cohomologyHn

loc(L(U), R(U))
is a sheaf. The following appears to be a convenient way to guarantee that the
chains are acyclic.

Proposition 2.13 Let X be a paracompact Hausdorff space, let L be a flabby
cosheaf of Lie algebras satisfying IV and V, and and let R be a sheaf of represen-
tations. Suppose that L has partitions of unity, i.e. that for every cover {Ui}
of U , there exist linear maps σi : L(U)→ L(Ui) such that for every X ∈ L(U),
only finitely many σi(X) are nonzero, and X =

∑
i ιUUiσi(X). Suppose fur-

thermore that these partitions of unity are local in the sense that σUi ◦ ιUUj = 0
if Ui ∩ Uj = ∅. Then the sheaves U 7→ Cnloc(L(U), R(U)) are soft, and therefore
acyclic.

Remark 2.14 One could of course try to use Hahn-Banach in order to prove
that the chains constitute even a flabby sheaf. Every time you use the axiom of
choice though, a little kitten dies and goes to heaven. (I refuse to specify which
one.)

Proof : We wish to prove that the restriction of Cnloc(L(U), R(U)) to a closed
set G ⊂ U is surjective. A section of the sheaf of cochains over G is precisely an
element of lim←−V⊃G C

n
loc(L(V ), R(V )). So choose V ⊃ G, and take an element

ψV ∈ Cnloc(L(V ), R(V )) that represents the germ. Choose G ⊂ V ′ ⊂ V ′ ⊂ V (X
is normal, so you can do this). Then U − V ′, and V cover U , so choose σU−V ′
and σV such that σU−V ′(X) +σV (X) = 0 for all X ∈ L(U). If X ∈ L(V ′), then
σU−V ′(X) = 0, so X = σV (X). The cochain ψU := σ∗V ψV is thus an extension
of the germ of ψV over G. �

We formulate proposition 1.15 for the local cohomology.

Proposition 2.15 Let the precosheaf L be such that the sheaves U 7→ Cnloc(L(U),R)
are acyclic. (e.g., L may satisfy the hypotheses of proposition 2.13.) Suppose
also that the local cohomology Hn−1

loc (L,R) is a sheaf with Ȟk(Hn−1
loc (L,R),U) =

0 for k = 1, 2 and for all coverings U . Then Hn
loc is a sheaf.
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Proof : Repeat the reasoning leading up to proposition 1.15, replacing the
Lie cochains Ck(L,R) by local cochains Cloc(L,R). �

2.3 Synthesis
Let F be a presheaf. After a choice of cover V = {Vi}i∈I such that

⋃
i∈I Vi = U ,

we denote by Ȟ−1F(V) and Ȟ0F(V) the cohomologies of the sequence

0→ F(U)→ Č0F(V)→ Č1F(V) . (8)

Of course F satisfies the ‘local identity’ axiom if and only if Ȟ−1F(V) van-
ishes for all possible covers, and the ‘gluing’ axiom if Ȟ0F(V) does. In effect,
Ȟ−1F(V) and Ȟ0F(V) measure how far F is removed from being a sheaf.

The following (well known) proposition says that two presheaves are isomor-
phic if they are isomorphic locally, and if they are equally far removed from
being a sheaf.

Proposition 2.16 Let F and S be presheaves over X, let V = {Vi}i∈I be an
open cover of U ⊆ X, and let µ : F → S be a morphism of presheaves such that

- µ is a local isomorphism, i.e. µVi : F(Vi)→ S(Vi) is an isomorphism for
all i ∈ I.

- The induced map Ȟiµ : ȞiF(V)→ ȞiS(V) is an isomorphism for i = −1,
and is injective for i = 0.

Then µ an isomorphism of presheaves.

Proof : We show that µU : F(U)→ S(U) is an isomorphism.
First, we show that µU is injective. Suppose that µU (fU ) = 0 in S(U).

Then certainly ρViUµU (fU ) = µViρViU (fU ) = 0 for all i ∈ I, and since µVi
is an isomorphism, we have fVi := ρViU (fU ) = 0. Thus fU defines a class in
Ȟ−1F(V), and since Ȟ−1µ is injective, Ȟ−1µ([fU ]) = [µU (fU )] = 0 implies
[fU ] = 0 in Ȟ−1F(V). But then fU = 0, and thus µU is injective.

Next, we show that µU is surjective. Given sU ∈ S(U), we construct an fU ∈
F(U) such that µU (fU ) = sU . Set si := ρViU (sU ), so ρVijVi(si) = ρVijVj (sj)

by the presheaf property of S. (We write Vij = Vi ∩ Vj .) Set fi := µ−1Vi (si)
and observe µVijρVijVi(fi) = ρVijVi(si) = ρVijVj (sj) = µVijρVijVj (fj). Since µVij
is an isomorphism, this implies ρVijVifi = ρVijVjfj . The fi constitute a Čech
-cocycle in Č0F(V), and [fi] is a class in Ȟ0F(V). Since Ȟ0µ([fi]) = [si] = 0
and Ȟ0µ is injective, we have [fi] = 0. So there exists an f ′U ∈ F(U) with
ρViUf

′
U = fi. Thus ρViU (µU (f ′U ) − sU ) = 0, and [µU (f ′U ) − sU ] ∈ Ȟ−1S(V).

Since Ȟ−1µ is surjective, we can pick [f ′′U ] such that Ȟ−1µ([f ′′U ]) = [µU (f ′U )−sU ],
so that [µU (f ′U−f ′′U )−sU ] = 0. Thus with fU = f ′U−f ′′U , we have µU (fU ) = sU ,
and µU is surjective. �

If F is a sheaf and S is a monopresheaf, we have Ȟ−1F(V) = Ȟ−1S(V) = 0
and Ȟ0F(V) = 0, so that the second requirement is automatically satisfied. We
obtain the following well known corollary.

Corollary 2.17 Let F be a sheaf, S a monopresheaf (i.e. a presheaf that sat-
isfies the local identity axiom), and let µ : F → S be a morphism of presheaves
such that each x ∈ M has an open neighbourhood V such that µW : F(W ) →
S(W ) is an isomorphism for any open W ⊆ V . Then S is a sheaf, and µ an
isomorphism.
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3 Examples
Let (X,ω) be a symplectic manifold of dimension 2n. We introduce 4 subtly
different Lie algebras of compactly supported infinitesimal symmetries of (X,ω).
The symplectic Lie algebra is defined as

Spc(X) := {X ∈ Vecc(X) ; LXω = 0} .

In particular, since dω = 0, LXω = diXω = 0. If iXω is not only closed but
also exact, iXω = −df , then X is called Hamiltonian:

Hamc(X) = {X ∈ Vecc(X) ; ∃f ∈ C∞(X) s.t. df = −iXω} .

We define C∞c → Hamc(X) by mapping f to the unique Xf such that df =
−iXfω. Note that f in the definition of Hamc(X) need not be compactly sup-
ported, so that C∞c → Hamc(X) need not be surjective if X is noncompact.
We equip C∞c with the Poisson bracket {f, g} = ω(Xf , Xg) = Xf (g), so that
f 7→ Xf becomes a homomorphism. Finally, we define

N(X) := {f ∈ C∞c (X) ; ∃ψ ∈ Ω2n−1
c (X) s.t. fω∧n = dψ} .

The relations between N(X), C∞c (X) and Spc(X) are neatly summarised by the
exact sequences

0→ H0
c (X,R)→ C∞c (X)→ Spc(X)→ H1

c (X,R)→ 0 , (9)

0→ N(X)→ C∞c (X)→ H2n
c (X,R)→ 0 , (10)

and

0→ N(X)→ Spc(X)→ H1
c (X,R)⊕H2n

c (X,R)/H0
c (X,R)→ 0 . (11)

The third equation is obtained from the first two by noting that if df = 0, then
fω∧n restricted to each connected component Xi must be a multiple of ωn.
Since [ωn] 6= 0 in H2n(Xi,R), the volume form fω∧n cannot be exact unless it’s
zero. Thus N(X) → Spc(X) is injective. Quotienting (9) and (10) by N(X),
we obtain

0→ H2n
c (X,R)/H0

c (X,R)→ Spc(X)/N(X)→ H1
c (X,R)→ 0

Since the terms on the right and those on the left have commuting representa-
tives, equation (11) follows.

Note that N(X) is isomorphic to the image of C∞c (X) in Hamc(X) if X is
compact, so in that case N(X) ' Ham(X).

Proposition 3.1 The commutator ideal in Hamc(X), C∞c (X) or N(X) is pre-
cisely the image of N(X). In particular, the Lie algebra N(X) is perfect,
[N(X), N(X)] = N(X).

Proof : Suppose f ∈ C∞(X) such that f = {g, h}. Then because LXgω = 0,
we have

f · ω∧n = Xg(h) · ω∧n

= LXg (h · ω∧n)

= d(h · iXgω∧n)

= −nd(h · dg ∧ ω∧(n−1))
= −ndh ∧ dg ∧ ω∧(n−1).
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In particular, fω∧n is exact (fω∧n = dψ) if f =
∑n
i=1{fi, gi} with fi, gi ∈

C∞(X). If furthermore Xgi and Xhi are in Hamc(X), i.e. if dfi and dgi are
compactly supported, then clearly ψ can be chosen to be compactly supported
as well.

Conversely, suppose that fω∧n = dψ with ψ compacty supported. We show
that Xf is in the commutator ideal. Write ψ =

∑m
k=1 ψk, where ψk has compact

support in an area with Darboux coordinates xi, pi. Note that dxi ∧ ω∧(n−1)
and dpi∧ω∧(n−1) constitute a basis for ∧2n−1TXm at each point, so that we can
write ψk =

∑n
i=1 φ

i
kdx

i ∧ω∧(n−1) +χikdp
i ∧ω∧(n−1), with φik and χik compactly

supported. Then choose compactly supported ξik and ηik that equal xi and pi on
the support of φik and χik respectively to obtain ψk =

∑n
i=1 φ

i
kdξ

i
k ∧ ω∧(n−1) +

χikdη
i
k ∧ ω∧(n−1), and thus f = − 1

n

∑n
i=1

∑m
k=1{φik, ξik}+ {χik, ηik}. �

3.0.1 The Hamiltonian functions

Because of equation (10) and because the commutator ideal of C∞c (X) is N(X),
we have H1

LA(C∞c (X),R) ' H2n
c (X,R)∗. Note that U 7→ C∞c (U) is a cosheaf

with partitions of unity, so that the sheaves of Lie cochains are acyclic. Conse-
quently, H1

LA(C∞c (X),R) is a sheaf. (This can be checked independently.)
We assume that a cover {Ui} of X has been chosen such that all intersections

are either empty or star-shaped, so that H2n
c (Ui1,...,in ,R) ' R. We then have

Ȟn(X,H1
LA(C∞c ,R)) ' Ȟn(X,R). (For n ≥ 0, and if X is connected also

for n = −1.) In view of the spectral sequence described before, the kernel
and cokernel of d(−1,2)2 : Ȟ−1H2

LA → Ȟ1H1
LA are the (−1, 2) and (1, 1) terms

on the third page, and thus survive to infinity. Since Ep,qn converges against
zero, they both vanish, so that Ȟ−1H2

LA ' Ȟ1(X,R). Similarly, the kernel of
d
(0,2)
2 : Ȟ0H2

LA → Ȟ2H1
LA survives, so that Ȟ0H2

LA ↪→ H2(X,R) is injective.

Remark 3.2 The third page shows that the cokernel of d(0,2)2 is isomorphic
to the kernel of d−1,32 in Ȟ−1H3

LA. If, as suspected, we have ȞnH2
LA = 0

for n ≥ 0, then the third and fourth page of the spectral sequence show that
Ȟ−1H3

LA ' Ȟ2(X,R) and that d0,33 : Ȟ0H3
LA → Ȟ3(X,R) is injective.

3.0.2 The algebra N(X)

Since N(X) is perfect, we have H1(N(X),R) = {0}. Because (10) is an exact
sequence, and C∞c and H2n

c are cosheaves, we have that N is an epiprecosheaf.

Proposition 3.3 The assignment U 7→ H2n
c (U,R) is a cosheaf.

Proof : If Ui covers U , then every fUω∧n can be written as
∑
i fiω

∧n using
a partition of unity. We prove that if ιU∪V,U ([fUω

∧n]) = ιU∪V,V (fV ω
∧n), then

[fUω
∧n] and [fV ω

∧n] have representatives with support in U ∪ V . If fUω∧n −
fV ω

∧n = dψU∪V , write ψU∪V = ψU − ψV using partitions of unity. Then
fUω

∧n − dψU = fV ω
∧n − dψV has support in U ∩ V . �

Consequently, C1(N,R) is a monopresheaf, Ȟ−1C1(N,R) = 0. The exact
sequence of presheaves

0→ C1(H2n
c ,R)→ C1(C∞c ,R)→ C1(N,R)→ 0
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with the middle one acyclic yields an isomorphism

Ȟk(C1(N),R) ' Ȟk+1((H2n
c )∗)

One can check that indeed Ȟ0((H2n
c )∗) = {0}, in agreement with Ȟ−1C1(N,R) =

0. If k 6= −1, then one can take (H2n
c (Ui1,...,in))∗) ' R, and

Ȟk(C1(N),R) ' Hk+1(X,R) .

3.1 A morphism of sheaves
If g is any Lie algebra with an invariant bilinear symmetric form κ, i.e. κ([X,Y ], Z)+
κ(Y, [X,Z]) = 0, then every antisymmetric (w.r.t. κ) derivation S of g induces
a 2-cocycle ψS by ψS(X,Y ) := κ(S(X), Y ). Indeed, since

δψS(X,Y, Z) = κ(S([X,Y ]), Z) + cycl.
= κ([S(X), Y ], Z) + κ([X,S(Y )], Z) + cycl.
= κ([Y, Z], S(X)) + κ([Z,X], S(Y )) + cycl.
= 2κ([X,Y ], S(Z)) + cycl
= −2κ(S([X,Y ]), Z) + cycl
= −2δψS(X,Y, Z) ,

we must have δψS = 0. If S happens to be an inner derivation, S = [Z, • ],
then ψS(X,Y ) = κ([Z,X], Y ) = κ(Z, [X,Y ]) = δχZ(X,Y ) with χZ(X) :=
κ(Z,X). We thus have a map Out(g)AS → H2(g,R) from the antisymmetric
outer derivations of g into the second cohomology.

3.1.1 Antisymmetric derivations for N(X) and C∞c (X)

We have seen that C∞c (X) ' N(X) ⊕ z with centre z ' H2n
c (X,R) consisting

of the compactly supported functions which are constant on every connected
component (and thus zero on every noncompact component). Since N(X) is
perfect, we have

H2(C∞c (X),R) = H2(N(X),R)⊕ ∧2H2n
c (X,R)∗ .

Since N(X) is perfect, its second Lie algebra cohomology is local, and the above
direct sum embodies a splitting of the cohomology in a local part and a part
generated by the cohomology in degree 1. In particular, the second (nonlocal)
term dies for connected X, compact or not.

For g = N(X) or g = C∞c (X), we have the nondegenerate invariant bilinear
form

κ(f, g) =

∫
X

fg ω∧n .

Bilinearity is clear, and it’s invariant because ({h, f}g+f{h, g})ω∧n = {h, fg}ω∧n =
(LXh(fg))ω∧n = LXh(fgω∧n) = d(fgiXhω

∧n). Nondegeneracy follows because
f2ω∧n is a positive volume form.

Every symplectic vector field S ∈ Sp(X) (compactly supported or not!) in-
duces an antisymmetric derivation f 7→ LSf on C∞c (X) that restricts to N(X).
We first check that S maps N(X) to N(X). If f ∈ N(X), i.e. fω∧n = dψ, with
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ψ compactly supported, then (LSf)ω∧n = LS(fω∧n) = LSdψ = d(iSdψ) and
LSf is again an element of N(X). We check that S is a derivation on C∞c (X).
If Xf is a Hamilton vector field, then LSf is a Hamilton function for [S,Xf ]. In-
deed, dLSf = diSdf = −diSiXfω = diXf iSω = LXf iSω = iSLXfω + i[Xf ,S]ω =
−i[S,Xf ]ω. Thus LS{f, g} − {LSf, g} − {f, LSg} is a Hamilton function for
[S, [Xf , Xg]]− [[S,Xf ], Xg]− [Xf , [S,Xg]] = 0, and therefore constant on every
connected component. Because LS preserves C∞c (X) and N(X), and because
[C∞c (X), C∞c (X)] = N(X), we see that LS{f, g} − {LSf, g} − {f, LSg} is an
element of N(X), and therefore zero.

The above reasoning shows that ψS is a 2-cocycle. If S = Xh is hamilto-
nian (but not necessarily compactly supported), then ψS = δχh, with χh(f) =∫
X
hfω∧n. Indeed, (LXhf)gω∧n = −(LXfh)gω∧n = −LXf (hgω∧n)+h{f, g}ω∧n,

and the first term yields zero when integrated. Since Sp(X)/C∞(X) ' H1(X,R)
(de Rham cohomology where the cycles are not necessarily compactly sup-
ported), we obtain a map of presheaves H1(X,R) → H2(N(X),R) that is
explicitly given by

[α] 7→ ψ[α](f, g) =

∫
X

α(Xf )gω∧n .

(We set α = iSω and use LSf = iSdf = −iSiXfω = (iSω)(Xf ).)
For C∞c (X) = N(X) ⊕ z, there are, in addition to the symplectic vector

fields, the derivations which are zero on N(X) and antisymmetric linear maps
d : z→ z on the centre. This yields a map of presheaves

µ : H1(X,R)⊕ ∧2H2n
c (X,R)∗ → H2

LA(C∞c (X),R) .

3.1.2 Reduction to the local case for C∞c (X,R)

We assume X to be connected, and choose a cover {Ui} by open sets with
star-shaped intersections. We forget the ∧2H0

c -part (which will not appear for
connected sets anyway), and consider µ : F → S with F(U) = H1(U,R) and
S(U) = H2

LA(C∞c (U),R).
The presheaf F is extremely simple: F(X) = H1(X,R), and F(Ui1...in) =

{0}. Thus Ȟ−1F = H1(X,R) and ȞiF = {0} for i ≥ 0 simply because all
chains are trivial. In particular, Ȟ0µ is injective. We will show that also Ȟ−1µ
is injective.

Ȟ−1µ is injective iff µX is injective on F(X), i.e. if ψα = δχ implies that
α is exact. In order to prove this, we construct a surjective map µX(F(X))→
Ȟ1(X,R). Since H1(X,R) (de Rham cohomology) is isomorphic to Ȟ1(X,R)
by de Rham’s theorem, the leftmost map in

H1(X,R)→ µX(F(X))→ Ȟ1(X,R)→ 0 (12)

cannot have a kernel, proving injectivity of µX .
The construction goes as follows. Every cocycle ψS can locally (on Ui) be

written as δχhi , with hi ∈ C∞(Ui,R) such that−iSω = dhi. Clearly d(hi−hj) =
0 on Uij , so ψS gives rise to a 1-cochain c1ij = hi − hj with values in R, and
one checks that δc1 = 0. If ψS = δχ, then certainly ψS |Ui = δχhi = δχ|Ui
and δ(χhi − χUi) = 0. Since H1(C∞c (Ui),R) is one dimensional with generator
f 7→

∫
Ui
f , we must have (χhi − χUi)(f) =

∫
c0i fω

∧n for some c0i ∈ R. We thus
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have χ|Ui = χhi+c0i , and restricting to Uij , we have hi + c0i = hj + c0j , and thus
c1ij = hi − hj = −(δc0)ij . This shows that the class [c1] ∈ Ȟ1(X,R) depends
only on the class of [ψS ]. Since [c1] is precisely the image of [iSω] ∈ H1(X,R)
in Ȟ1(X,R) under the isomorphism that comes from de Rham’s theorem, the
right hand map in (12) is surjective, so, as discussed, the left hand map must
be injective.

Remark 3.4 It would be surprising if the map described above would not just
be the second page differential d−1,22 .

Because we already know that Ȟ−1S ' Ȟ1(X,R), this implies that Ȟ−1µ
is an isomorphism. Since Ȟ0µ is injective, proposition 2.16 tells us that µ is an
isomorphism of presheaves if and only if it is an isomorphism locally. We have
proven

Lemma 3.5 The map µ is an isomorphism of presheaves if and only if

H2
LA(C∞c (U),R) = {0}

for every open, star shaped neighbourhood U in R2n.

3.1.3 Conformal symplectic vector fields

A conformal symplectic vector field S is one that satisfies LSω = λω with
λ ∈ C∞(X,R). Then LSf is a hamilton function for [S,Xf ] + λXf , because
dLSf = diSdf = −diSiXfω = diXf iSω = LXf iSω − iXf diSω = iSLXfω +
i[Xf ,S]ω − iXfλω = −i[S,Xf ]+λXfω. Thus LS{f, g} − {LSf, g} − {f, LSg} is a
Hamilton function for Xg(λ)Xf −Xf (λ)Xg − λ[Xf , Xg].

Assume that λ is constant, λ = c. (E.g. S =
∑n
i=1 xi

∂
∂xi

+yi
∂
∂yi

with c = 2.)
The operator H := LS + 1/2nc is skew symmetric w.r.t. the invariant bilinear
form, andH{f, g}−{Hf, g}−{f,Hg} is a hamilton function for −3/2λ[Xf , Xg],
and thus equal to −3/2{f, g} up to a constant. We set ψH(f, g) = κ(Hf, g).
Then δψH(f, g, h) = n+2

2 cκ(f, {g, h}), so that the canonical third cohomology
class is trivial.

Also, [S, T ] is symplectic if T is, because L[S,T ]ω = [LS , LT ]ω = −LT cω = 0.
If T = Xf , then [S, T ] is even hamiltonian: −i[S,Xf ]ω = −LSiXfω + iXfLSω =
LSdf − cdf = d(LSf − cf). Thus LS − c is a derivation on C∞c (X).

3.2 Continuity of cocycles
Let ψ : C∞(M) × C∞(M) → R be a continuous (w.r.t. the topology induced
by the seminorms ‖f‖~α,K = supK ‖∂~αf‖ where K runs through the compact
subsets of coordinate patches) cocycle. Since it is automatically local, the re-
striction to C∞c (M) of ψ(f, • ) : C∞(M) → R is a distribution with compact
support [Hel84, p. 240], denoted ψf . Because ψ is continuous, so is the map
f 7→ ψf : C∞c (M) → C∞c (M)′. Clearly the restriction to C∞c (U) is contin-
uous for every neighbourhood U of x ∈ M , so there are no points of discon-
tinuity. According to Peetre’s theorem [Pee60], there exists on every compact
subset K of a coordinate patch a finite number of distributions φ~α~β such that
ψ(f, g) =

∑
~α,~β φ

~α,~β(∂~αf∂~βg) for all f, g with support in K.
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Any distribution φ on K takes the shape φ(f) = (−1)|~α|
∫
K
F (x)∂~αf(x)dx

with F continuous. We can perform integration by parts, to make sure F is C1

(or in fact Cn) raising the degree of ~α. All in all, we may write

ψK(f, g) =
∑
~α,~β

∫
K

F ~α,
~β∂~αf∂~βgdx

for all f , g with support in K, where the F ~α,~β can be chosen Ck.
Since ψ is antisymmetric, we have ψ(f, g)+ψ(g, f) = 0, i.e. (with f~α := ∂~αf)∫

K

(F ~α,
~β + F

~β,~α)f~αg~β = 0 .

We can therefore replace F ~α,~β by 1
2 (F ~α,

~β − F ~β,~α) without changing ψ, and we
assume without loss of generality that F ~α,~β is antisymmetric.

Suppose that K is equipped with Darboux coordinates and consider the
equation δψ = 0, written as∫ (

F ~α,
~βΩστ

)(
∂~αf∂~β(gσhτ ) + ∂~αg∂~β(hσfτ ) + ∂~αh∂~β(fσgτ )

)
= 0

———————–
Let Ω ⊂ R2n be an open subset, and let Let ψ : C∞c (Ω) × C∞c (Ω) → R be

continuous and local: ψ(f, g) = 0 if f and g have disjoint support.
Consider the map C∞c (Ω)→ D(Ω) : f 7→ ψ(f, • ), and denote the distribu-

tion ψ(f, · ) by ψf . Since Supp(ψf ) ⊆
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