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Abstract

Some loose thoughts as to how and when the cohomology of a cosheaf
of Lie algebra can be ascertained locally. Beware! This is by no means a
preprint: the proofs are in various degrees of incompleteness, and state-
ments should not be trusted blindly. Please don’t distribute.

1 Precosheaves of Lie algebras

Let X be a topological space and let O(X) be the collection of open sets, ordered
by inclusion. A precosheaf of Lie algebras is a functor L from O(X) to the
category of Lie algebras: for each open set, we have a Lie algebra L(U), for each
inclusion V' C U we have a Lie algebra homomorphism tyy : L(V) — L(U),
the trivial inclusion U C U corresponds to the identity tyy = I on L(U), and
W CV CU implies tyyivw = tuw-

A presheaf of vector spaces is a contravariant functor R from O(X) to the
category of vector spaces: for each open set U we have a vector space R(U), for
each inclusion V' C U we have a linear map Jyy : R(U) — R(V), the inclusion
U C U yields the identity Jyy =1, and W C V C U implies JwvyJvy = Jwu-
A presheaf of representations is a presheaf of vector spaces where each R(U)
carries a representation my of L(U), compatible in the sense that

Jvu-myowv =7y - Jvu.

1.1 Precosheaves of cohomologies

We denote by C*(L, R) the cochain complex of alternating multilinear maps
¥ 1 L™ — R with differential 6 : C"(L, R) — C"T1(L, R) given by

oY(Xo, ..., X Z DRXy - (Xo, ., Xy, Xa)
k=0
+ Y UMYX X)) Ko X X X))
0<k<I<n

Proposition 1.1 Let L be a precosheaf of Lie algebras, and let R be a presheaf
of representations. Then for each n € N, the assignment U — C™(L(U), R(U))
constitutes a presheaf of vector spaces, and § is a morphism of presheaves. In
particular, the assignment U — H™(L(U), R(U)) constitutes a presheaf of vector
spaces.



Proof: IfV C U, then the Lie algebra homomorphism ¢y @ L(V) — L(U) in-

duces a chain map +* : C*(L(U), R(U)) = C*(L(V),R(V)) by (t*¥)(X1,...,X,) =

Jvo(tov(X1),. .., tov(Xyn)). Indeed, for any n-cochain ¢ we have

L*d’(/J(Xo,...,Xn) = Z (—1)i+jJVU’(/J([LUv(Xi),LU\/(XJ‘)],LU{/(XQ),...,i,...,j,...,LUv(Xn))

0<i<j<n

+ > (DRI (wv (X)) (v (Xo), - ks (X))

0<k<n

= Z (—1)i+j1/)(LUv([Xi,Xj], LUV(XO); N ,7?, N 75, ..

0<i<j<n

.y LUV(—X'n))

+ > (CDFm (X)) Fvot (v (Xo), - ks wv (X))

0<k<n
= 50 (Xos. .., Xn)

We therefore have restriction maps pyy : H*(L(U), R(U)) — H™*(L(V), R(V))
satisfying the presheaf property pwv o pvuv = pwu. ]

Remark 1.2 Note that the cohomology is not automatically a sheaf if L is a
cosheaf and R a sheaf. Take for example the (flabby) cosheaf of Lie algebras
L(U) = C*(U) with the trivial bracket. The second (continuous) cohomology
with trivial coefficients H*(L(U),R) is simply the space of (continuous) skew-
linear maps ¢ : CP(U) x CX(U) — R. This is a presheaf, but not a sheaf.
The problem here is not gluing, but local identity. If X is covered by Uy and Us,
and 1.2 on L(Usy 2) are given by, say, 1(f,g) = fUlXUl f@)k1(x,y)g(y)dedy
and ¥a(f,g) = fU2xU2 f(@)ka(z,y)g(y)dxdy, (we assume X to be a mani-
fold equipped with a volume form dx) then if Y1|v,nu, = Yo2|uinu,, we have
ki1(z,y) = ko(x,y) if x,y € Uy NUs. We can therefore extend k1 and ko to
a kernel k on X x X, so that the gluing axiom is fulfilled. But this extension
is highly non-unique; the ‘diagonal’ terms k|u,xu, and k|lu,xu, are of course
determined by k1 and k2, but the ‘off-diagonal’ terms K, ju,)x(U,/uy) can be
specified more or less at will. There is no hope of satisfying the ‘local identity’.
If it is a sheaf at all, it will be a sheaf over X x X/Sa, not over X.

1.1.1 The Precosheaf over the Spectrum

Given a Lie algebra L, one can obtain a topological space and a precosheaf of
Lie algebras in the following fashion.

Definition 1.3 An ideal P of a Lie algebra L is called prime if for any two
ideals T and J, [I,J] C P implies I C P or J C P. The prime spectrum
SpecP(L) is defined as the set of all proper prime ideals P < L.

We endow the prime spectrum with the ‘Zariski topology’ in the usual fashion:
we declare the closed sets to be those of the form

V(I):={P € Spec’(L)|P DI}

with I is an ideal in L. We denote the complementary open sets by U(I) :=
Spec”(L) — V(I), and we denote by I° := (\pcy () P the biggest ideal J such
that V(J) = V(I).



Proposition 1.4 This makes Spec? (L) into a topological space. The locale of
open sets is isomorphic to the locale of ‘open’ ideals I = I°, equipped with the
operations IV J:=I1+J and INJ :=INJ=[I,J]°.

Proof : We have a 1 : 1-correspondence between ‘open’ ideals I° and open
sets U(I°).

- Both @ = U({0}) = V(L) and Spec”(L) = U(L) = V({0}) are open as
well as closed.

- Naca Vo) = V(3 4cala), where > 4 I, is the ideal of finite sums
of elements of I,. Therefore, (J,c, U(la) = U(>_,c la). In particular,
arbitrary intersections of closed sets are closed and arbitrary unions of
open sets are open.

- V(I1)UV (I3) = V([I1, I2]) because for any prime ideal P, P D I; or P D I
is equivalent to P D [I1, I2]. Finite unions of closed sets are thus closed
and finite intersections of open sets are open: U(I1) NU(I3) = U([11, I2]).

This shows that Spec?(L) is a topological space, that unions of open sets cor-
respond to sums of ideals and that intersections of open sets correspond to
commutators of ideals.

Finally, P D I° N J° implies P D I N J, which implies P D [I, J], which
implies P D I or P D J, which implies P D I° or P D J° which implies
P>I°nJ°. Thus I°NJ°=({InNnJ)° =[I,J]°. O

The closure of U C Spec?(L) is given by U = {Q € Spec? (L) |Q 2 Npey P}
or U =V(Npey P). Indeed, the smallest closed set containing U corresponds
to the biggest ideal I such that P D I for all P € U, which is obviously (\pc; P.

We've already used that intersections and unions of sets correspond to sums
and commutators of ideals. This correspondence is a functor.

Proposition 1.5 The prime spectrum is a covariant functor from the category
of Lie algebras to the category of locales, Spec? : Lie — Loc.

Proof : As a locale, the topological space Spec?(L) is isomorphic to the
set of ‘open’ ideals in L with IV.J := I+J and IANJ := [I, J]°. (We call an ideal
I'in L ‘open’ if [ =1°.) If ¢ : L — L’ is a homomorphism of Lie algebras, then
¢~1: I' = ¢~1(I') maps open sets in Spec”(L’) to open sets in Spec”(L) in a
way that preserves A and V, i.e. it is a morphism of frames. Since the category of
locales is the opposite category of the category of frames, every homomorphism
¢ : L — L' defines a morphism of locales Spec?(¢) : Spec? (L) — Spec?(L). O

Note that although the locales Spec”(L) are honest topological spaces and
the Spec?(¢) are morphisms of locales, they need not be induced by continu-
ous maps because the inverse image of a prime ideal need not be prime. The
situation is different from that in commutative rings, where the spectrum is
a contravariant functor to the category of topological spaces because inverse
images of prime ideals of commutative algebras are prime.

The closed points in Spec?(L) are exactly the maximal ideals. The following
Lemma therefore shows that if L is perfect, then all points are closed (and, in
particular, Spec”(L) is a T'-space).

Proposition 1.6 If L is perfect, [L, L] = L, then every maximal ideal is prime.



Proof : Let M be a maximal ideal, and let TN J C M for two ideals I and J.
Suppose that neither one is contained in M. By maximality of M, we then have
I+M =Land J+M = L. Thus [L, L] = [I, J]+[I, M|+ [M, J]+[M,M] C M,
contradicting the fact that L is perfect. (|

Definition 1.7 We call the set Spec™ (L) of mazimal ideals of L the maximal
ideal spectrum. If L is perfect, then Spec™(L) inherits the subspace topology
from Spec”(L). The closure of U C Spec™(L) with respect to this topology is
U ={M € Spec™(L); Nger @ € M}.

For each Lie algebra L, we thus obtain a (flabby) precosheaf of Lie algebras
over Spec?(L) by setting L(U) := ﬂQGUC Q for each open U, and if L is perfect,
we can do the same with Spec™(L).

Remark 1.8 In this level of generality, I do not believe there is sufficient con-
trol over the precosheaves of Lie algebras obtained in this fashion to reach any
localisation results on the cohomology. I'm just stating this because it serves
as motivation, and because in many examples of cosheaves of Lie algebras (e.g.
the cosheaf of compactly supported vector fields), the base space can be recovered
from the global sections in the manner here described. This is Pursell-shanks’
theorem [SP54], which holds in great generality.

1.2 Full cohomology vs. local cohomology
We define the local cohomology of a precosheaf of Lie algebras.

Definition 1.9 A collection {Uy,...,U,} of sets is called connected if for any
1 <i,j <mn, there exist i =i1,ia,...,ix—1,ik = j such that U;, NU; ., # 0 for
alll <s<k-—1.

This is not quite equivalent to U?=1 U; being connected, because the U; are
allowed to be empty or disconnected. (I'm not sure which one of the two is the
proper definition.)

Definition 1.10 A cochain ¢ € C™(L(U), R(U)) is called local if py, v (X1, . ..
0 for all X; € wyu, (L(UL)), i =1,...,n, such that {Up,Ux,...,Un} is not con-
nected. The vector space of local cochains is denoted C: .(L(U), R(U)).

loc

Note that for R the constant sheaf R(U) = R with values in the trivial repre-
sentation, this reduces to ‘¢(X1, ..., X,) =0 for all X; € «yy, (L(U;)) such that

{U1,...,Un} is not connected’.
Also note that any collection containing ) is disconnected. Consequently,
a local cochain v satisfies ¢(Xy,...,X,) = 0 as soon as any of the X; is in

tygL(0). The above notion of ‘locality’ is a weaker condition than being diagonal
in the sense of Losev, because the latter requires 1 to vanish if ﬁ?;llUi = 0.
Note that U — C}

loc

The differential J restricts to map of presheaves C’_

(L,R) — CJ*'Y(L, R), be-
cause {[U;,U;],..., Ui,..., Uj,...U,} is automatically disconnected whenever

{Uy...U,} is. We therefore have a natural map

H!.(L,R) — H"(L,R).

(L(U), R(U)) is a sub-precosheaf of U — C™(L(U), R(U)).



The aim is to prove that the algebra H*(L, R) is generated by the image of
H!.(L,R). In case of continuous cocycles on a precosheaf of locally convex
topological Lie algebras, the proper statement is of course that the algebra
generated by the image of H} (L, R) is dense in H*(L, R).

1.2.1 The local cohomology generates the full cohomology

Let L be a precosheaf of Lie algebras such that [txyL(U),cxvL(V)] = 0 if
UNV =10. For brevity, write Lx (U) for vxy L(U).

Lie algebra cohomology, with chains C™(L(X),R) and differential ¢ is dual
to Lie algebra homology with chains C,(L(X),R) = A"L(X) and differential
D: Cn — Cn,1 given by D(/\;nleZ) = Zl§i<j§n(_]‘)i+j[Xi?Xj] As;ﬁi,j X, It
is readily verified that U + Co(L(U), R) is a precosheaf, and that D*|y o1y =
twv o DF|y. (We write D¥|y; for the restriction of D¥ to AFL(U), and D¥|x s
for the restriction of D% to Lx(U).)

The key observation in the following is that Ce(L(X),R) is a (supercom-
mutative graded) algebra, and if [Lx(U), Lx (V)] = 0 with X € C,,,(Lx(U),R)
and Y € C,y(Lx(V),R), then

D(XAY)=D(X)AY + (—1)%eX) X A D(Y)
because all terms mixing Lx (U) and Lx (V') vanish.

Lemma 1.11 Let L be a precosheaf of Lie algebras satisfying [Lx (U), Lx (V)] =
04 UNV = 0. Every cocycle )™ is cohomologous to a cocycle " such
that v"(X A DY) = 0 and y"(DX AY) = 0 for all X € N*uxy(L(U)) and
Y € Ny (L(V)) such that UNV =0 and k = 0,...,n+ 1. If L is

a precosheaf of locally convex topological Lie algebras, 1 can be chosen to be
continuous if 1 is.

Proof : If ™ is a cocycle on L(X), and U,V are disjoint open subsets of X,
then define

A" DAL (U)) x DNV L (V) = R
(DX,DY) ~ ¢"(X ADY).

This is well defined. Suppose that DX = DX’. Then v"(X A DY) = ¢™(X' A
DY), because

SYM(X AY) =" (DX AY) 4 (=1)38X) " (X A DY) =0

implies D(X — X’) =0 = ¢ (X — X' ADY) = 0. This also shows that v can
be equivalently defined as 4"~ 1 (DX, DY) = (—1)ds(X)+1yn(DX V).

GAP: THIS ALSO SHOWS THAT ~ IS SEPARATELY CONTINUOUS IF
L(U) IS A LOCALLY CONVEX LIE ALGEBRA AND ¢ IS CONTINUOUS.
WE NEED THAT IT IS JOINTLY CONTINUOUS IN THAT CASE, I DON’T
SEE WHY IT SHOULD BE.

Because Y"1 : D(A*1Lx(U)) x D(A""**1Lx(V)) — R is bilinear, it defines
a linear map 4"~ ! : D(AFLx (U))®@ D(A"**1Lx(V)) — R, and thus a linear



map Y~ 1 D(AFFLLx (U)) A D(A" 1 Lx(V)) — R. Our definition of 4"~!
depends on k, U and V.
We wish to show that the different versions 'y,’;[_J}V agree on the overlap of

their domains, so that a single y*~! on

Span(DXADY ; X € AM 1 Lx(U),Y € A" * 1Ly (V),UNV =0,k =0,...,n+1)

is well defined. We need to show that if DX A DY = DX’ A DY’, then X A
DY — X' A DY’ is in the image of D.

THERE’S A GAP HERE. PROBABLY USE THE COSHEAF PROPERTY OF
L, OR PERHAPS TRY TO PROVE THAT A"L IS A COSHEAF OVER THE
SYMMETRIC PRODUCT X"/S,. WE'LL ASSUME THAT THE VARIOUS
Yeviy ARE COMPATIBLE.

Then extend 4"~ from this linear span to a cocycle I~ on A"L(X). If
~"~! is continuous, one can choose I'"~! to be continuous by the Hahn-Banach
theorem for locally convex topological vector spaces.

Then for X € A*Lx(U), Y € A" *Lx(V), one has
ST HXAY)=T"" DX AY + (-1)%eX) X A DY),

which equals /" (X AY) if either Y € D(A"*T1(Lx(V))) or X € D(AFTYH(Lx (U))).

If we define! ¢" := ™ — 6T, then " vanishes on D(AFt!Lx(U)) x
AR L(V) and on AFL(U) x D(A"*+1Lx(V)) for all open disjoint U,V C
X. In other words, for X € AFL(U) and Y € A" FL(V), we have not only
(DX AY + (—=1)*X A DY) = 0, but we even have

Y (DXAY)=0 and ¢ (XADY)=0
separately. O

Theorem 1.12 (Conjectural!) Let L be a precosheaf of nuclear topological
Lie algebras satisfying [Lx(U),Lx(V)] =04 UNV = 0. Then the algebra
generated by the local cohomology H}f .(L(X),R) is dense in H*(L(X),R).

Proof : If ¢ is continuous, and vanishes on A¥L(U) A D(A"*T1Lx(V)) and
on D(AMFILx (U))AA""FLx (V) for all UNV = 0, then it defines a continuous
linear functional ),y on

A Lx(U)/D(ANFF Ly (U)) @ A% Lx (V) /D(A"=*+H1Lx (V) (1)

for all disjoint U, V' C X. (The ® denotes the closure of the tensor product w.r.t.
the topology induced by the inclusion into A" L(X).) Now A*Lx (U)/D(A*+1Lx (U))

is a subspace of AFL(X)/D(A*1L(X)) and similarly A" “*Lx (V)/D(A"=*+1Lx (V))
is a subspace of A""*L(X)/D(A"~*+1L(X)). Since the 9\ are compatible for
different pairs U,V

_ !Note that if )™ = §x™ !, then on ImD**1 | x ImD™ =k |y, we have v*»~1 = x»~!. Thus
P = §(x™ 1), where X! := x»~! — I'"~! vanishes on ImD**+1|; x ImD" ¥ |y .



THIS IS PRECISELY THE PART WE STILL NEED TO PROVE!

this defines a continuous linear functional on the subspace of

NL(X)/D(NFTL(X)) & A8 L (V) /DA 1Lx (V) (2)

generated by the spaces (1). Use the Hahn-Banach theorem to extend this to
a continuous linear functional on (2). That (1) is a subspace of 2 requires the
assumption that ® and & are compatible. In order to assure this, we assume that
L is a precosheaf of nuclear spaces. Subspaces, tensor products and quotients
by closed subspaces of nuclear spaces are again nuclear, and (EQF)" ~ E'QF’
[Gro52]. Since (A* L(X)/D(/\k“L(X)))/ is exactly the space of continuous
closed k-cochains on L(X), we obtain closed k- and n — k-cochains ¢f and ¢n—*
on L(X) such that the induced element on (2) can be written Y oo | ¢F ® ¢ F.
If we now consider the induced element Y oo ¢% A ¢7 % in A"L(X), then it
coincides with ¢ on AFLx(U) A A" FLx(V) if U and V are disjoint. That is
to say: 9 =1 — o2 L ok A ¢~ vanishes on AFLx (U) A A""FLx (V) for all
disjoint U and V.

If we repeat this procedure for £k = 1,...,n, in each step respecting the
above property for all the k’s you’ve already handled,
HOW???

then the resulting cocycle 11, vanishes on A¥ Lx (U)AA"* Lx (V) for all disjoint
U and V and for all k, and is therefore local. We see that every continuous
cocycle 1) on L(X) is cohomologous to 1o + Z:;ll S0 ¢k AgnF, the sum of
a local cocycle and a term generated by (possibly nonlocal) cocycles of smaller
degree.

The statement now follows by induction: certainly, the first Lie algebra
cohomology is generated by the local cohomology. (It is local itself.) Suppose
that the cohomology up to and including degree n — 1 is generated by the local
cohomology. Then if 1 is any n-cocycle, both 11,. and the ¢X are generated by
local cocycles. This means that also ¢ is generated by local cocycles. O

Remark 1.13 Apart from the holes in the proof, we also haven’t shown that the
map H? (L,R) — H"(L, R) is injective. This is something you would certainly
like to have.

1.3 A double complex

Ifu = {U;; i € T} is a cover of X, then denote by C"C™ (L, R,U) the space
of Cech cocycles wr.t. U. If we define Us,,. 4, = Ui N...U;,, then a
Cech n-cocycle 9, assigns to each tuple (i, ...,%,) a Lie m-cocycle v, ., €

~7in

C™(L(Ui,....in), R(Ui,,...i,.)), in such a way that ¥;_ ;.. ., ig(n) = (—1)%8@ay

Remark 1.14 Although strictly speaking everything in this section ought to
make sense for the precosheaf of arbitrary cochains U +— C™(L(U), R(U)),
the assumptions we will need (especially regarding acyclicity of the presheaf of
cochains) will make sense only in the context of local cohomology. Everywhere
where it says ‘cochain’, one should keep in mind ‘continuous local cochain’.



The Lie algebra differential 4 : C’”Cm(L,R,U) — C”C’"“(L,RL{) com-
mutes with the Cech differential d : C"C™(L, R,U) — C"*1C™(L, R,U), so we
obtain the following double complex.

4 4 4

0 ——— C2(L(M), R(M)) —2— COC2(L, R,U) —— C'C?(L, R,u) —* C2C*(L, R,U) “—

é 6 é

0 ——— CY(L(M), R(M)) —2— COCN (L, R,U) —2 C'CV (L, R,U) — C2CY (L, R, U) ——

4 4 é

0

0

C°R

The occasional minus signs are merely a matter of convention; they make sure
that the two differentials in the complex anticommute rather than commute.

Note that C°(L, R,U) = R, so that the kernel of 6 : R(U) — CY(L(U), R(U))
is Ann(L(U)) := {r € R(U);ny(X)r = 0VX € L(U)} by definition. The ho-
mology of the n** column (C™"C*(L, R,U), §) therefore calculates the Lie algebra
cohomology H*(L(Us,....i,.), R(Ui,,....i,,)) on the intersections of the sets in the
cover, with the convention that H°(L(U), R(U)) = Ann(L(U)), the annihilator
Ann(L(U)) :={r € R(U); ny(X)r =0V X € L(U)}. We are interested in the
homology of the 0" column, H*(L(M)), R(M)).

Note also that the homology of the m™ row, H*(C*C™ (L, R,U),d), is zero
at the first spot for all U, (i.e. H-Y(C*C™(L,R,U),d) = {0} for all &) if and
only if the presheaf of Lie cochains C™ (L, R) satisfies the local identity axiom.
Its cohomology at the second spot is zero for allif, (HO(C*C™(L, R,U),d) = {0}
for all &), if and only if the presheaf C™ (L, R) satisfies the gluing axiom. Thus
the presheaf of Lie cochains is a sheaf precisely if H='(C*C™(L, R,U),d) =
HO(C*C™(L,R,U),d) = {0} for all U.

We try to extract information from this complex by using the two spectral
sequences that converge to the diagonal complex. We specialise to the case
R = R. Although the bottom nonzero row of the sequence then induces E2:0 =
HP(M,R) for p > 0, E;1° = R, these terms are not connected to the rest of
the diagram because ¢ : C"R — C"C"(L,R,U) is simply the zero map. In the
remainder, we therefore set this bottom row to zero.

The cohomology of the ‘total’ complex can now be calculated in two different

ways: by a spectral sequence ; E**® with second page ;EY? = HP(HY(C?' C7 ,6), (—1)7 d),
and by a spectral sequence ;7 E®* with second page 1 EL? = HP(HI(CP' C9', (~1)7d), §).

Assume that, for some reason, we knew that the presheaves C9(L,R) were
in fact acyclic sheaves. (We will show that something like this happens for the
sheaves of local cochains if L is sufficiently ‘soft’.) Then ;rEY'? = 0, because
the cohomology H?(C*C4, d) vanishes. (I mean the cohomology w.r.t. d of each
row in the above complex; vanishing for p = —1,0 is then the sheaf property



of C1(L,R,U), and vanishing for p > 0 is tantamount to acyclicity of these
sheaves.)

The second page of ;E2® consists of the Cech cohomology of the Lie algebra
cohomology presheaves H™(L,R), i.e., ;EY? = HP(H(L,R),U). We obtain
(recall that the row corresponding to H(L,R) is not zero, but irrelevant)

0
0 H=Y(H3(L,R),U) HO(H3(L,R),U) HY(H3(L,R),U)
0 HY(H?(L,R),U) H°(H?(L,R),U) HY(H?(L,R),U)
0 H=Y(HY(L,R),U) HO(HY(L,R),U) HY(HY(L,R),U)
0 0 0 0

with a differential dy of bidegree (2, —1), i.e. a mapping
dy? . HP(HY(L,R),U) — HPT2(HT (L, R),U).
Since this spectral sequence too must converge to zero, we obtain

Proposition 1.15 Let the precosheaf L be such that for each i = 1,... n the
presheaves of Lie cochains with trivial coefficients C*(L,R) are in fact sheaves,
and suppose that they satisfy HI(C*(L,R),U) = 0 for all j < 2(n —1i). Suppose
also that the cohomology H" (L, R) is a presheaf with H*(H"*(L,R),U) =
HFYH*(L,R),U) =0 fork=1,...,n — 1. Then H"(L,R) is a sheaf.

Proof: Under these conditions, the terms ; E 1™ and ;EX™ stabilise at r = 2,
and equal H—'(H"(L,R),U) and H°(H™(L,R),U) respectively. Indeed, the
conditions have been so chosen that the maps d,. of degree (r, 1 —r) always map
to zero. Since ;EP? must converge to zero, the result follows. O

For example, if C1(L,R) is a sheaf, then so is H!(L,R). Suppose that all
C™(L,R) are acyclic sheaves. Suppose further that L is a sheaf of perfect Lie
algebras (so that H'(L,R) = 0). Then H?(L,R) is a sheaf. This may help
one determine H?(L,R) from local data. If one should find that H?(L,R) is an
acyclic sheaf, then H3(L,R) must be a sheaf. Again, this information may help
one determine it, and if it happens to be an acyclic sheaf, then H*(L,R) must
be a sheaf as well, etc. etc.

2 Cosheaves of Lie algebras

This section is devoted to finding sufficient conditions in order that the presheaf
of local continuous cochains be an acyclic sheaf. We first define cosheaves of Lie
algebras.

H?(H3(L,R),U)

H?(H?*(L,R),U)

H?*(H'(L,R),U)



Definition 2.1 A precosheaf of Lie algebras is called a cosheaf if it further
satisfies the (dual versions of) the local identity axiom and the gluing axiom.

I If {U;}ier is such that UtU; = U, then L(U) = ), wu, L(U;).

II If {U;}ier is such that UrU; = U, and if Y, wu, (X;) = 0, then there exist
Xz'j S L(Ul n UJ) with in = 7Xij and X; = Zj LU, Ui (XZJ — Xj) .

A cosheaf is called flabby if the vyy are all injective.
The following property follows from II.
I If U = V; U V,, then Luv, (L(Vl)) NLuv, (L(Vg)) = LUVs (L(Vlg))

For a flabby precosheaf, II also follows from I and II’. A flabby cosheaf can
therefore also be defined as a flabby precosheaf satisfying I and IT’.

Proposition 2.2 For a precosheaf of Lie algebras, II implies II’. For a flabby
precosheaf, I and I’ also imply I1.

Proof: We prove II’, assuming the ‘co-gluing’ property II. If Y € tyv, (L(V1))N
LUVQ(L(‘/Q)), then Y = LUV1(X1) = LUVQ(_XQ) for some X; € L(Vvl)7 Xy €
L(V3). According to II, tpyv, (X1) + tuv, (X2) = 0 then implies the existence
of X0 = —X9; € L(Ulg) such that X; = LU, Uqs (X12 — Xgl) and Xy =
LU2U12(X21 — Xlg). Therefore Y = LUU12(X12 — Xgl) € LUU12(L(U12)), and
we have vy, (L(V1)) Ny, (L(V2)) C tyv,, (L(Vi2)). The converse inclusion is
obvious.

Now we assume II’, and prove II under the assumption that all the ¢’s are
injective. We start with the case N = 2. If wyy, (X1) + twy, (X2) = 0, then
with W = Uy U Uz we have tpw (twu, (X1) + twu,(X2)) = 0, and therefore
twu, (X1) + 1w, (X2) = 0 by injectivity of yw. Thus twy, (X1) = —twu, (X2)
must be in vy, (L(Ui2)) by II' and we are done.

We proceed by induction on N. If (pp, (X1) + ... + tpuy (Xn) = 0, then set
W :.=U,U...UUpy_1, and write

oy (Xn) = —wwwlwo, (X1) + .. +owoy, (Xnv-1)) - (3)

By property I, we have tyy, (Xn) € touy LIUN)ow (L(W)) = cownuy (LWN
Uy)), and by property I, we have L(IWNUy) = vaz_ll twwrunUiy (L(Uin)). Set-

ting vy (Xn) = townuy (Ya) and Yy = Zf\[:;l twruyUin (Xinv — Xni) (with
Xy = —Xni), we therefore find

N-1
oy (Xn) = Z L, (Xin — Xni) - (4)

i=1

Decomposing tpyu,y = tvuytuyu;y and using the injectivity of cyu,,, we con-
clude

N-1
Xy =Y twyvn (Xiv — Xni).- (5)
=1

We can rewrite equation (3) as

N-1
0="> wu, (Xi + v (Xin — XNi)) :

i=1
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We now apply the induction hypothesis, and obtain X;; = —X;; € L(U;;) (with
1,7 < N —1) such that

N-1
Xi+ vy (Xiv — Xni) = Z v, (Xig — Xji) - (6)

j=1
Combining equations (5) and (6), we obtain II. O

We study cosheaves of Lie algebras over X with the following additional
properties.

IIT Each L(U) is perfect.
IV If V C U, then tyy (L(V)) is an ideal in L(U).
V L(0) = {0}.

In particular, if V1,V C U and V4 NV = (), then

[Lova (L(V1))s tov, (L(V2))] = o vinv, (L(VA N V2)) = {0} .

The only nontrivial commutators are the ones between ‘overlapping’ elements,
so properties IV and V insure that the Lie bracket is local in nature. Property
V excludes for example the flabby cosheaf L(U) = g x C°(U,g), which has
L(0) = g as a ‘global’ component.

Note that for the natural precosheaf induced by a perfect Lie algebra L over
Spec™ (L), I’ and IV are automatically fulfilled. As it is flabby, I implies II. In
this situation, it therefore suffices to check I, V, and III.

2.1 Localisation of cocycles revisited

The following should eventually be subsumed under theorem 1.12. It appears
here separately because the proof is more or less in order, showing that the (im-
portant!) special case of second Lie algebra cohomology with trivial coefficients
does not suffer from the holes in the ‘proof’ of theorem 1.12. Also, it shows how
to handle the case where R is not R.

The conditions I through V suffice to prove that the second Lie algebra
cohomology with trivial coefficients is local.

Lemma 2.3 Let L be a precosheaf of Lie algebras satisfying I1I, IV and V. Let
R be a presheaf of representations of L which is local in the sense that VNV’ = ()
implies that Jy ymy owyy is zero. Let v be an n-cocycle on L(U) with values in
R(U). If& € wu, (L(U;)) for1 <i<nwithVNU; =0 for alli and U;NU; =
for i £ 4, then

JVUw(gla v agn) =0.

In particular, if R is the trivial representation, then ¥ lives on the fat diagonal.
Under the above conditions, we have

P&, &) =0.

11



Proof : As L(U,) is perfect, we may write X; = 3 [V;*, Y]] as a finite sum
of commutators with Y, Y, € L(U). As 61 = 0, we have

n

> D[ &) G0 b ) = = Y (=D ()b, o

0<k<i<n k=0

/

for all &, ..., &, in L(U). If we now substitute & = tpy, (Y1), &1 = wu, (Y19),
and & =y, (Xi) for k > 1, then using the fact that [y y, (L(U; )) wu, (L(Uy))] =
{0} for 1 < i < j < n, we see that the only term surviving on the Lh.s. is

G([eov, (V) oo, (Vi) oy (X2), - twu, (Xa)). Thus

U, (Y2, Y1), e (Xa), - oo, (Xn)) =
—7u (oo, VN (oo, (V7 %), wu, (Xa), .. www, (Xn))
+7TU(LUU1 (YN (o, (Y1), w, (X2), s tou, (Xn))

75”)

- Z 1o (o, (X)) ¢ o, (V) o, (Y19), wos (X2), - X o, (X)) -

As the r.h.s. is obviously contained in 7y (cuv, (L(U1))+- . .4wuw, (L(Uy)))R(U)
for all a, so is Y(tyy, (X1),-..,twv, (Xn)). Because V N U; = (), the locality
property of R insures that Jyyny (wwu,(L(U;))) is zero. O

Every 1-cochain with coefficients in R is local by definition. The above
shows that closed 2-cochains with values in R are also local, so that H?(L,R) =
HZ (L,R) if L satisfies I through V.

loc

2.2 Cohomology as a sheaf
2.2.1 Paracompact Hausdorff spaces

We gather some standard facts on paracompact Hausdorff spaces.

Proposition 2.4 FEvery closed subset C' of a paracompact Hausdorff space X
18 paracompact.

Proof: Let V be an open cover of C. Then by definition, each V' € V is of the
form V' N C for some open V' C X. All these V', together with the open set
X — C constitute an open cover of X, which has a locally finite open refinement
W. Intersecting all W € W with C yields a locally finite open refinement of V.

O

Proposition 2.5 FEvery paracompact Hausdorff space X is regular; if x ¢ C
for C C X closed, then there exist open U and V with x € U, C C V and
UUV = 0. In particular, if x € U for an open U, then there exists an open
neighbourhood V. of x with V. C U.

Proof : As X is Hausdorff, we may choose for each ¢ € C disjoint open
neighbourhoods U, and V. of z and c respectively. Let Sy be the collection of
all the V., supplemented by the set X —C. By paracompactness, Sy has a locally
finite refinement S;. Let So be the locally finite cover of C' that one obtains
by removing from S; the sets that do not intersect C. The point = then has
a neighbourhood N intersecting only finitely many sets in S5, say Wi through

12



Wy, If W; liesin V,,, let U := N NN,U,; and let V' be the union of sets in
So. Then surely z € U, C C V and UUV = (), as N only intersects the sets
W, which have empty intersection with the Us,. O

If V is a covering of X, and A C X, then the star of A w.r.t. V is defined as
Star(A4,V) :=U{V € V; VNA#0}. Arefinement V of a covering U is called a
star-refinement if for each V' € V), there exists a U € U such that Star(V,V) C U.
The following theorem states that paracompactness can be defined in terms of
star-refinements.

Theorem 2.6 A Hausdorff space X is paracompact if and only if every open
covering of X has an open star-refinement.

Proof : See [Wil70, p. 151]. O

Definition 2.7 A collection {Uy,...,U,} of sets is called connected if for any
1 <i,j <n, there exist i = iy,iz,...,in—1,ik = j such that U;, NU;_,, # 0 for
alll <s<k-—1.

The following consequence is immediate, but nonetheless worth noting.

Corollary 2.8 Let X be a paracompact Hausdorff space. Then for every open
cover U of X, and for any n € N, there exists a locally finite cover V such
that for every connected subcollection {Vi,...,V,} C V, the union \J;_, Vi is
contained in some U € U.

Proof : Iterate the procedure of getting a star-refinement of & n — 1 times,
and take a locally finite refinement. |

2.2.2 Local cohomology

The following shows that the support of X € L(U) is always contained in a
closed subset of U.

Proposition 2.9 Let L be a precosheaf over a mormal space X that satisfies
property I. Let U C X be open. Then for each X € L(U), there exists an open
U cU cU with X € LUU/(L(U/)).

Proof : The collection V = {V Cc U; V C U} is a cover of U because X is
regular. In view of property I, we can find Vi,...,Vy € V and X; € L(V;)
such that X = SN iy, (X,). Thus X = e (Y) with U7 = Y, V; and
Y = va:l v, (X;). Clearly, we have U C U’ C U. O

Definition 2.10 A cochain ) € C™(L(U), R(U)) is called local if py,utp( X1, . ..
0 for all X; € wyu,(L(Uy)), i =1,...,n, such that {Uy, U, ..., Un} is not con-
nected. The vector space of local cochains is denoted CI . (L(U), R(U)).

loc

Note that for R the constant sheaf R(U) = T with values in the trivial rep-
resentation, this reduces to ‘¢(Xy,...,X,) = 0 for all X; € vyy, (L(U;)) such
that {Uj,...,Un} is not connected’. Also note that any collection containing
() is disconnected. Consequently, a local cochain 1) satisfies ¥(X1,...,X,) =0
as soon as any of the X; is in tygL(0). The above notion of ‘locality’ is a
slightly weaker condition than being diagonal in the sense of Losev. Note that
Uw— CP(L(U),R(U)) is a sub-precosheaf of U — C™(L(U), R(U)).

loc
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Lemma 2.11 Let L be a cosheaf of Lie algebras over a paracompact Hausdorff
space, and let R be a sheaf of representations. Then U — C[! (L(U), R(U)) is
a sheaf for every n € N.

Proof : The local identity axiom for U — Ct .(L(U), R(U)) follows from the
property I for the cosheaf L, and from local identity for R. Indeed, let 1) be a
local n-cochain on L(U), let V be an open cover of U such that ¢f;,¢ = 0 for
all V e V. We prove that ¢(X1,...,X,) =0 for all X; € L(U).

We would like to have star refinements of V, but as U need not be para-
compact, we will make due with star refinements of V' := {VNU'; V € V},
with U’ € U’ C U a ‘slightly smaller’ set with the property that each of the
X; is of the form X; = tyy/(Y;) with ¥; € L(U’) (cf. proposition 2.9). As
{V.NU’; V € V} is an open cover of the paracompact Hausdorff space U’, it
allows for a locally finite open n 4 1-fold star refinement W in the sense of
corollary 2.8. Then W' :={W NU’; W € W} is a locally finite open n + 1-fold
star refinement of V'.

Using property I, we write each Y; as a finite sum Y; = chvzl LUwy, (YF),
where each Y} is in L(W},), and the Wy, are in W’. We then have

Jwi uh( X1, Xn) = Z Jw,,u (LUWkl Y7, .. ww,, (Kf”)) .

Since 9 is local, all terms on the right vanish except the ones where {Wy,, Wy, , ...
is connected, in which case Wy, U ... U W}, is contained in a single V' € V.
Since ¢7,1) = 0, these terms must vanish too, and Jw, v (X1,...,Xn) = 0
for all Wy,. Since the Wy, cover U’, the local identity axiom for R then tells
us that Jyp(Xy,...,X,) = 0 for every U’ with the property that all the
X; are in typ/(L(U")). Now if we choose U' C U’ C U"” C U"” C U, then
Juru (X1, ..., X,) = 0 because of the above, and J(Ufﬁ,)Uw(Xl, LX) =0
because 1 is local, and U — U’ is disjoint from the ‘supports’ of the X;. Using
again the local identity axiom for R, we see that ¢(X1,...,X,) = 0 as required.

The gluing axiom for the U — C} (L(U), R(U)) follows essentially from
property II for the cosheaf L, and from the gluing axiom for R. Let V be a
cover of U, and ¢y € C2 (L(V), R(V)) be such that ¢~y Vv = (5yay v
for any V,V' € V. We wish to glue these together, i.e. we wish to find a
(necessarily unique) ¢y € CJ} . (L(U),T') such that ¢ %y = ¢Yv.

We fix U’ C U’ C U, and first glue together the ¢y := 1},7,~,%v to obtain a
Yy on L(U'). Again, let W’ be an n+1-fold star refinement of V' (both covers of
U’), and write Y; = Y0y tow, (V) with V; € L(U") and Y} in L(W,). We
define ¥y ...k, 00 L(Wi, ) X ... x L(Wy,) to be zero if {Wy,, Wg,,...,Ws, }
is not connected. If it is connected, then (J;_, Wy, C V' for some V' € V', and
we define ¢k, ...k, to be the restriction of Jw, v/¢v. This does not depend
on the choice of V' if also | J;—, Wi, C V", then J;_, Wi, C V' N V', and ¢
agrees with ¢y~ on L(V' N V") by assumption. We thus define

Yo (Y, Yn) o= Y Vg, (VI V) (7)
k1,0 kn

We need to check that this is independent of the way we split Y; into L*U/Wki (Ylkl ).
Suppose that also Y; = >, 5y, (Y ). Without loss of generality, we can
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assume that the labels [; and k; are the same. Then the difference between the
two versions of equation (7) is

k k k kn
Z wk();klv--wkn(yll _Y/117Y22""’Yn )

1kl K rk2 -k k
+ "/}ko;khm,kn(yl 7Y22_Y2 ,Y33,...,Yn")
+

k1 tkn—1 3 kn 1k
+ wko;kl,...,k‘n(yl 7"')an—1 7Yn _Ynn)'

Let ZF := Y} — Y’¥. Then Dk, LU, (ZF1) =0, so that the property II for L
yields ZF € L(Wj, N W}) such that ZF = —Z% and ZF = 3, tw, wow, (ZF).
Consequently, each nonzero term

wko;k17-~7kn (Y/]fl y e LW, Wi, W, (szlll) cey Yricn)
coming from Yy, .k, (Y5, ..., ZF ... Y) is compensated by a term
wko;kum,li ,,,,, kn (Yllflv cos LW, Wi 0, (7Z;€ili)> s ’an)
coming from Y, .k, ..k, Y Zli ... Y. Indeed, if the former is nonzero,

then the collection {Wy,, ..., W, NW,,... W} } is connected (and in particular
Wi, N W;, # (), so that {Wy,,..., Wy, } U{W,,} is connected. Therefore,
Wi, U (W, U...UWy, ) is contained in a single set V' € V' (remember that )’
was an n + 1-fold star refinement rather than an n-fold), and 9.k, ... 1, agrees
with Yrgikr,.. 1. .k, Every nonzero term in the difference is thus cancelled
by another term, and ¢y,.u/(Y1,...,Y,) is a well defined element of R(Wy,). If
Wio MWy # 0, then Wy, UW}, C V' for some V' € V, so that tx,.0r (Y1, -, Yn)
and ¢y .ur (Y1,...,Y,) agree on Wy, N Wy, . We then use the gluing axiom on
R to assemble the ¥y, (Y1,...,Y,) into a single well defined ¢y (Y7, ...,Y,).

It is clear from the definition that ¢f;,, 9y = ¥y. Indeed, let all the Y; be
ity L(V'). Then the WNV’ with W € W’ cover V’, and the Y;* can be cho-
sen as Ly, WkiﬂV’Y/ft with Y’ € L(Wy, NV’). Assume that {Wy,,..., W, }
is connected. If (J;_, Wi, € V", then . (Wi, NV’') C V" NV, so that
Jviowy vy (bvrw,, i, wow,, Y,i) is equal to Jviow, vy (bviw, ave (Y, wow, nve (Y/E)
due to the requirement that ¢y and 1y~ agree on the overlap of V/ and V.
This means that if the ¥; come from V’, then all the gk, ..k, (Y7, ..., Y")
can be expressed in terms of ¥y, so that ¢f;y Yy = Y.

We have shown that the iy glue together to a ¥y, on L(U'). In order
to extend this to U, we need property 1. Because of ‘local identity’, the g/
is unique, and does not depend on our choice of refinement. If X; is in L(U)
for i = 1,...,n, we choose U’ C U’ C U such that X; = 1y (Y;), and set
V(X1, ..., Xpn) =y (Y1,...,Y,). This does not depend on our choice of U’; if
U” is another possibility, then U"" = U’ N U" is yet another, and ¢J;, 9y =
U = Yy, because of the uniqueness of Y. O

Proposition 2.12 Let L be a cosheaf of Lie algebras over a paracompact Haus-
dorff space satisfying IV. Let R be a sheaf of representations with the property
that VNV’ = () implies JV’U'/TU(LUV(XV)) =0. Then dy : Cf(l)c(L(U), R(U)) —
CPYL(U), R(U)) is a homomorphism of sheaves.

loc
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Proof: We already know that dys is a morphism of presheaves C"(L(U), R(U)) —
C"tY(L(U),R(U)), and we need only show that the image of a local cocycle is
local. Counsider Jy_,ydp(Xo,. .., Xn) with X; € vy, (L(U;)), and suppose that
{U_1,...,Uy,} is not connected.

Consider first the terms of the form Jy_, y¥([X;, X;], Xo, . .. JXis ,Xj, e X))
Because of property IV, [vy,uv,v, (L(Us)), tv,uv,u, (L(Uj))] is contained in vy, v, v, (L(Us))N
u,uvu, (L(Uy)). Because of property II, wy,uu, v, (L(Us)) N ww,uv,u, (L(Uy)) is
contained in ¢y,uv, v,nv, (L(U;NU;)). But {U;NU;,U_1,. .., Ui,..., (jj, oo Unt
cannot be connected: if U; NU; = 0, then this is clear. if U; NU; # 0, then this
follows from the fact that {U_q,...,U,} was not connected. So either way, the
terms of the form Jy ,p¢([X;, X;], Xo, ... X, Xj, ..., X,) vanish.

Now suppose that any term of the form Jy_,u7my (Lov, (X)) (Xo, - - - Xy, Xn)

is nonzero. Then {Uy,...,U;,...,U,} is connected. Also, {U_1,U;} must be
connected because of the ‘locality’ condition we imposed on R. And finally,

{U_1UU;, Uy, ..., Ui,...,Uy,} is connected because Jy_,uu,v v (Lov_,uu; (tu_ uv,v; X)) (Xo, - - .

is nonzero, and equal to the expression 7y_, vy, (tu_,uv,v, X)) Ju_ ov, o (Xo, -« o, Xiy oo o, Xn)-
All of this entails that {U_1,...,U,} is connected, contrary to our assumption.
O
This is in general not sufficient to prove that the local cohomology H} .(L(U), R(U))
is a sheaf. The following appears to be a convenient way to guarantee that the
chains are acyclic.

Proposition 2.13 Let X be a paracompact Hausdorff space, let L be a flabby
cosheaf of Lie algebras satisfying IV and V, and and let R be a sheaf of represen-
tations. Suppose that L has partitions of unity, i.e. that for every cover {U;}
of U, there exist linear maps o; : L(U) — L(U;) such that for every X € L(U),
only finitely many o;(X) are nonzero, and X = Y . wyy,0:(X). Suppose fur-
thermore that these partitions of unity are local in the sense that oy, oLyy; =0
if UyNU; = 0. Then the sheaves U — CJ: (L(U), R(U)) are soft, and therefore
acyclic.

Remark 2.14 One could of course try to use Hahn-Banach in order to prove
that the chains constitute even a flabby sheaf. Fvery time you use the axiom of
choice though, a little kitten dies and goes to heaven. (I refuse to specify which
one.)

Proof : We wish to prove that the restriction of CJ . (L(U), R(U)) to a closed
set G C U is surjective. A section of the sheaf of cochains over G is precisely an
clement of lim _  Cpg (L(V),R(V)). So choose V D G, and take an element

loc

Yy € CL(L(V), R(V)) that represents the germ. Choose G C V' C V' C V (X

is normal, so you can do this). Then U — V/, and V' cover U, so choose o, v

and oy such that o, ¢ (X)+oy(X) =0forall X € L(U). If X € L(V’), then

oy v (X) =0,s0 X = oy(X). The cochain ¢y := o7ty is thus an extension

of the germ of ¥y over G. (]
We formulate proposition 1.15 for the local cohomology.

Proposition 2.15 Let the precosheaf L be such that the sheaves U — CJt (L(U),R)
are acyclic. (e.g., L may satisfy the hypotheses of proposition 2.13.) Suppose
also that the local cohomology H\"_*(L,R) is a sheaf with H*(H* *(L,R),U) =

loc loc

0 for k =1,2 and for all coverings U. Then H} . is a sheaf.
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Proof : Repeat the reasoning leading up to proposition 1.15, replacing the
Lie cochains C*(L,R) by local cochains Coc(L, R). O

2.3 Synthesis

Let F be a presheaf. After a choice of cover V = {V;}ies such that (J;.,; Vi = U,
we denote by H~'F(V) and H°F(V) the cohomologies of the sequence

0— FU)—= C'FV) = C'FV). (8)

Of course F satisfies the ‘local identity’ axiom if and only if H—'F(V) van-
ishes for all possible covers, and the ‘gluing’ axiom if H°F (V) does. In effect,
H='F(V) and H°F(V) measure how far F is removed from being a sheaf.

The following (well known) proposition says that two presheaves are isomor-
phic if they are isomorphic locally, and if they are equally far removed from
being a sheaf.

Proposition 2.16 Let F and S be presheaves over X, let V = {V;}icr be an
open cover of U C X, and let p: F — S be a morphism of presheaves such that

- is a local isomorphism, i.e. py, : F(V;) = S(V;) is an isomorphism for
alliel.

- The induced map H'p : H'F(V) — H'S(V) is an isomorphism fori = —1,
and is injective for i = 0.

Then p an isomorphism of presheaves.

Proof : We show that uy : F(U) — S(U) is an isomorphism.

First, we show that uy is injective. Suppose that py(fy) = 0 in S(U).
Then certainly pv,upu(fu) = pv,pvio(fu) = 0 for all ¢ € I, and since uy;,
is an isomorphism, we have fy, := py,u(fu) = 0. Thus fy defines a class in
H~'F(V), and since H ' is injective, H 'u([fv]) = [pv(fv)] = 0 implies
[fu] =0 in H='F(V). But then fy = 0, and thus uy is injective.

Next, we show that uy is surjective. Given sy € S(U), we construct an fy €
F(U) such that py(fu) = su. Set s; := pyu(sv), so pv,vi(si) = pv,,v;(55)
by the presheaf property of S. (We write V;; = V; NV;.) Set f; := u(/il(si)
and observe piv;, pv, v, (fi) = pvi,vi(si) = pvi,v, (s5) = pvi, pviv; (f;)- Since py,
is an isomorphism, this implies pv, v, fi = pv;,;v; f;. The f; constitute a Cech
-cocycle in COF(V), and [fi] is a class in HOF(V). Since HOu([fi]) = [s:] =0
and HOu is injective, we have [f;] = 0. So there exists an f;, € F(U) with
pvivfi; = fir Thus pyu(po(ff) — sv) = 0, and [uu(fi;) — su] € H'S(V).
Since H 1y is surjective, we can pick [f{}] such that H = u([f{#]) = o (fi;)—sul,
so that [uy (f{; — f{7) —sv] = 0. Thus with fy = f{, — f{;, we have py (fu) = su,
and py is surjective. g

If F is a sheaf and S is a monopresheaf, we have H~'F(V) = H~'S(V) =0
and HOF (V) = 0, so that the second requirement is automatically satisfied. We
obtain the following well known corollary.

Corollary 2.17 Let F be a sheaf, S a monopresheaf (i.e. a presheaf that sat-
isfies the local identity axiom), and let p: F — S be a morphism of presheaves
such that each x € M has an open neighbourhood V' such that pyw : F(W) —
S(W) is an isomorphism for any open W C V. Then S is a sheaf, and p an
1somorphism.
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3 Examples

Let (X,w) be a symplectic manifold of dimension 2n. We introduce 4 subtly
different Lie algebras of compactly supported infinitesimal symmetries of (X, w).
The symplectic Lie algebra is defined as

Sp.(X) :={X € Vec.(X); Lxw = 0}.

In particular, since dw = 0, Lxw = dixw = 0. If ixw is not only closed but
also exact, ixw = —df, then X is called Hamiltonian:

Ham.(X) = {X € Vec.(X); 3f € C°(X) s.t. df = —ixw}.

We define C° — Ham.(X) by mapping f to the unique Xy such that df =
—ix,w. Note that f in the definition of Ham.(X) need not be compactly sup-
ported, so that C2° — Ham.(X) need not be surjective if X is noncompact.
We equip C2° with the Poisson bracket {f, g} = w(X;, X;) = X(g), so that
f = Xy becomes a homomorphism. Finally, we define

N(X):={feCX(X); W € 2" HX) s.t. fw' =dy}.

The relations between N (X), C°(X) and Sp.(X) are neatly summarised by the
exact sequences

0 — HY(X,R) — C>(X) — Sp.(X) = HY(X,R) = 0, (9)
0— N(X) = C®(X) = H™(X,R) =0, (10)

and
0— N(X) = Sp.(X) — H{(X,R) & H*(X,R)/H?(X,R) — 0. (11)

The third equation is obtained from the first two by noting that if df = 0, then
fw® restricted to each connected component X; must be a multiple of w™.
Since [w"] # 0 in H?"(X;,R), the volume form fw”® cannot be exact unless it’s
zero. Thus N(X) — Sp.(X) is injective. Quotienting (9) and (10) by N(X),
we obtain

0 — H>"(X,R)/H?(X,R) = Sp.(X)/N(X) — H:(X,R) = 0

Since the terms on the right and those on the left have commuting representa-
tives, equation (11) follows.

Note that N(X) is isomorphic to the image of C°(X) in Ham.(X) if X is
compact, so in that case N(X) ~ Ham(X).

Proposition 3.1 The commutator ideal in Ham.(X), C°(X) or N(X) is pre-
cisely the image of N(X). In particular, the Lie algebra N(X) is perfect,
[N(X), N(X)] = N(X).

Proof : Suppose f € C°°(X) such that f = {g,h}. Then because Lx,w =0,
we have
f.w/\n — Xg(h)~wAn
= Lxg (h . w/\n)
= d(h . ixgw/\n)
= —nd(h-dgAnw"D)
= —ndhAdg AN,
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In particular, fw’" is exact (fw" = dy) if f = Y7 {fi,0:} with fi,g; €
C>(X). If furthermore X, and X, are in Ham.(X), i.e. if df; and dg; are
compactly supported, then clearly ¥ can be chosen to be compactly supported
as well.

Conversely, suppose that fw" = di with ¢ compacty supported. We show
that X is in the commutator ideal. Write ¢ = Z k=] 1k, where 15 has compact
support in an area with Darboux coordinates z*,p’. Note that dz? A w (*—1)
and dp’ Aw” "1 constitute a basis for A?"~1T X, at each point, so that we can
write P = > 5, drdrt Aw NPT 4yt dpt AwhN 1 , with #% and x4 compactly
supported. Then choose compactly supported &}, and ni that equal 2" and p’ on
the support of gb’ and xj, respectively to obtain v = Zz L PLdEr A whn=1) 4

xkdﬁ Awh = 1) and thusf——l Zl 1Zk 1{¢ka£k}+{Xk777k} O

3.0.1 The Hamiltonian functions

Because of equation (10) and because the commutator ideal of C'¢°(X) is N(X),
we have H}i ,(C®(X),R) ~ H?"(X,R)*. Note that U — C°(U) is a cosheaf
with partitions of unity, so that the sheaves of Lie cochains are acyclic. Conse-
quently, Hi ,(C°(X),R) is a sheaf. (This can be checked independently.)

We assume that a cover {U;} of X has been chosen such that all intersections
are either empty or star-shaped, so that H*"(U;, . ; ,R) ~ R. We then have
H"(X, HiA(C’OO R)) ~ H™(X,R). (For n > 0, and if X is connected also
for n = —1.) In view of the spectral sequence described before, the kernel
and cokernel of dg_m) : H-'H? , — H'H} , are the (—1,2) and (1,1) terms
on the third page, and thus survive to infinity. Since EF'? converges against
zero, they both vanish, so that H~'H? , ~ H'(X,R). Similarly, the kernel of

d™ . HOH? , — H2H} , survives, so that HOH? , < H2(X,R) is injective.

Remark 3.2 The third page shows that the cokernel of d is isomorphic
to the kernel of dy"® in H™YH3} ,. If, as suspected, we have H”H%A =0
for n > 0, then the third and fourth page of the spectral sequence show that
H-'H} , ~ H*(X,R) and that dy* : HOH? , — H*(X,R) is injective.

3.0.2 The algebra N(X)

Since N(X) is perfect, we have H'(N(X),R) = {0}. Because (10) is an exact
sequence, and C2° and H2" are cosheaves, we have that N is an epiprecosheaf.

Proposition 3.3 The assignment U + H2"(U,R) is a cosheaf.

Proof : If U; covers U, then every fyw”" can be written as ), f;w"" using
a partition of unity. We prove that if tyuv.u([fuw™]) = wuvy (frw™), then
[fuw"?] and [fyw”?] have representatives with support in U U V. If fyw™® —
frw™t = dyyuy, write Yoy = Yy — 1y using partitions of unity. Then
fow™ — dyy = fyw™ — dipy has support in UNV. O

Consequently, C'(N,R) is a monopresheaf, H~'C*(N,R) = 0. The exact
sequence of presheaves

0 — CYH? R) = C*CZ R) = C*N,R) =0
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with the middle one acyclic yields an isomorphism
H*(CH(N),R) >~ H*((HZ")")

One can check that indeed HO((H?2")*) = {0}, in agreement with H—'C*(N,R) =
0. If k # —1, then one can take (H>"(U;, . ,.))*) ~ R, and

H*(CY(N),R) ~ HF(X,R).

3.1 A morphism of sheaves

If g is any Lie algebra with an invariant bilinear symmetric form &, i.e. k([X,Y], Z)+
k(Y,[X, Z]) = 0, then every antisymmetric (w.r.t. k) derivation S of g induces
a 2-cocycle ¥g by ¥s(X,Y) := k(S(X),Y). Indeed, since

s(X,Y,Z) = k(S([X,Y]),Z) + cycl.
= w([S(X),Y], Z2) + s([X, S(Y)], Z) + cycl.
= (Y, Z],5(X)) + s([Z, X],5(Y)) + cycl.
= 2x([X,Y],S8(2)) + cycl
= =2x(S([X,Y)]),Z) + cycl
= —20Ys(X,Y.Z),
we must have d1)g = 0. If S happens to be an inner derivation, S = [Z, o],

then ¥g(X,Y) = k([Z,X],Y) = k(Z,[X,Y]) = dxz(X,Y) with xz(X) :=
k(Z,X). We thus have a map Out(g)as — H?(g,R) from the antisymmetric
outer derivations of g into the second cohomology.

3.1.1 Antisymmetric derivations for N(X) and C(X)

We have seen that C2°(X) ~ N(X) @ 3 with centre 3 ~ H>"(X,R) consisting
of the compactly supported functions which are constant on every connected
component (and thus zero on every noncompact component). Since N(X) is
perfect, we have

H?*(C°(X),R) = H*(N(X),R) @ A2H*"(X,R)*.

Since N(X) is perfect, its second Lie algebra cohomology is local, and the above
direct sum embodies a splitting of the cohomology in a local part and a part
generated by the cohomology in degree 1. In particular, the second (nonlocal)
term dies for connected X, compact or not.

For g = N(X) or g = C°(X), we have the nondegenerate invariant bilinear

form
g9) = / fgw™™
X

Bilinearity is clear, and it’s invariant because ({h, f}g+f{h, g})w™* = {h, fg}w"* =
(Lx,(fg))w"™ = Lx, (fgw"*) = d(fgix,w""). Nondegeneracy follows because
f2w" is a positive volume form.

Every symplectic vector field S € Sp(X) (compactly supported or not!) in-
duces an antisymmetric derivation f +— Lgf on C°(X) that restricts to N(X).
We first check that S maps N(X) to N(X). If f € N(X), i.e. fw = dy, with
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1 compactly supported, then (Lgf)w™ = Lg(fw™®) = Lgdy) = d(igdt)) and
Lsf is again an element of N(X). We check that S is a derivation on C°(X).
If X is a Hamilton vector field, then Lg f is a Hamilton function for [S, X]. In-

deed, dLgf = digdf = —disixfw = diniSw = LXfiSw = isLXfw + i[Xf’S]w =
—is,x;)w- Thus Ls{f, Yy —{Lsf,g} — {f,Lsg} is a Hamilton function for
1S, [ X5, X5l =[S, X¢], Xg] — [ X, [S, X4]] = 0, and therefore constant on every

connected component. Because Lg preserves C2°(X) and N(X), and because
[C22(X),C(X)] = N(X), we see that Ls{f,g} — {Lsf,g} — {f,Lsg} is an
element of N(X), and therefore zero.

The above reasoning shows that g is a 2-cocycle. If S = X}, is hamilto-
nian (but not necessarily compactly supported), then ¢¥g = dxp, with xx(f) =
Jx hfw™. Indeed, (Lx, f)gw"" = —(Lx, h)gw™ = —Lx, (hgw"")+h{f, g},
and the first term yields zero when integrated. Since Sp(X)/C>®(X) ~ H*(X,R)
(de Rham cohomology where the cycles are not necessarily compactly sup-
ported), we obtain a map of presheaves H!(X,R) — H?(N(X),R) that is
explicitly given by

(o] = Yy (fog) = /X a(Xp)gw’

(We set a = isw and use Lgf = igdf = —igix,w = (isw)(Xy).)

For C°(X) = N(X) @ 3, there are, in addition to the symplectic vector
fields, the derivations which are zero on N(X) and antisymmetric linear maps
d : 3 — 3 on the centre. This yields a map of presheaves

p: HY(X,R)® A2H?™(X,R)* — H? ,(C°(X),R).

3.1.2 Reduction to the local case for C°(X,R)

We assume X to be connected, and choose a cover {U;} by open sets with
star-shaped intersections. We forget the A% H?-part (which will not appear for
connected sets anyway), and consider p : F — S with F(U) = H'(U,R) and
S(U) = H3,(C=(U).R).

The presheaf F is extremely simple: F(X) = HY(X,R), and F(U;,.. ;) =
{0}. Thus H-'F = H'(X,R) and H'F = {0} for i > 0 simply because all
chains are trivial. In particular, H%y is injective. We will show that also H!u
is mJectlve

H~'y is injective iff py is injective on F(X), i.e. if ¥4 = dx implies that
a is exact. In order to prove this, we construct a surjective map px (F (X)) —
H'(X,R). Since H'(X,R) (de Rham cohomology) is isomorphic to H'(X,R)
by de Rham’s theorem, the leftmost map in

H'(X,R) = px(F(X)) = H(X,R) = 0 (12)

cannot have a kernel, proving injectivity of pux.

The construction goes as follows. Every cocycle ¢g can locally (on U;) be
written as 0 xp,, with h; € C°°(U;, R) such that —isw = dh;. Clearly d(h;—h;) =
0 on Usj, so 9s gives rise to a 1-cochain c = h; — h; with values in R, and
one checks that éc!' = 0. If ¥g = dy, then certalnly Yslu, = Oxn, =
and d(xn, — xv;) = 0. Since HY(C°(U;),R) is one dimensional with generator
fe [y, f, we must have (xn, — xuv,)(f) = [ ¢} fw"" for some ¢ € R. We thus
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have x|y, = Xhi+c0 and restricting to U;;, we have h; + & = h; + c?, and thus
ct; = hi — hj = —(8c°);;. This shows that the class [¢!] € H*(X,R) depends
only on the class of [1g]. Since [c!] is precisely the image of [isw] € H*(X,R)
in A'(X,R) under the isomorphism that comes from de Rham’s theorem, the
right hand map in (12) is surjective, so, as discussed, the left hand map must
be injective.

Remark 3.4 It would be surprising if the map described above would not just
be the second page differential d;l’Z.

Because we already know that H—'S ~ H'(X,R), this implies that 'y
is an isomorphism. Since H°p is injective, proposition 2.16 tells us that j is an
isomorphism of presheaves if and only if it is an isomorphism locally. We have
proven

Lemma 3.5 The map p is an isomorphism of presheaves if and only if
H} A(C(U),R) = {0}

for every open, star shaped neighbourhood U in R?™.

3.1.3 Conformal symplectic vector fields

A conformal symplectic vector field S is one that satisfies Lsw = Aw with
A € C®(X,R). Then Lgf is a hamilton function for [S, Xf] + XX, because
dLsf = disdf = —disixfw = diX‘fisw = LXfisw — Z'deisw = isLXfUJ +

ix;,s)W — ix; A0 = —i[s x,]4rx,w- Thus Ls{f,g} —{Lsf,g} —{f Lsg} is a
Hamilton function for X,(A\)X; — X;(M\) X, — A\ X, X,

Assume that A is constant, A = c. (E.g. S =", xia%i +yiaiy,- with ¢ = 2.)
The operator H := Lg + 1/2nc is skew symmetric w.r.t. the invariant bilinear
form, and H{f, g} —{Hf,g}—{f, Hg} is a hamilton function for —3/2A[X s, X,],
and thus equal to —3/2{f,g} up to a constant. We set vy (f,g9) = c(Hf,g).
Then §¢u(f,g,h) = “E2ck(f,{g, h}), so that the canonical third cohomology
class is trivial.

Also, [S,T] is symplectic if T'is, because Lig rjw = [Ls, Lr|w = —Lrcw = 0.
If T'= Xy, then [S,T] is even hamiltonian: —ig x ,jw = —Lsix,w +ix,Lsw =
Lsdf — cdf =d(Lsf —cf). Thus Lg — ¢ is a derivation on C°(X).

3.2 Continuity of cocycles

Let ¢ : C*°(M) x C®(M) — R be a continuous (w.r.t. the topology induced
by the seminorms || f||%¥ = supj ||05f| where K runs through the compact
subsets of coordinate patches) cocycle. Since it is automatically local, the re-
striction to C°(M) of (f, ®) : C°(M) — R is a distribution with compact
support [Hel84, p. 240, denoted ;. Because % is continuous, so is the map
[ty CP(M) = CX(M)'. Clearly the restriction to C2°(U) is contin-
uous for every neighbourhood U of x € M, so there are no points of discon-
tinuity. According to Peetre’s theorem [Pee60], there exists on every compact

subset K of a coordinate patch a finite number of distributions ¢®? such that
U(f,9) =>4 5¢5’5(85f85g) for all f, g with support in K.
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Any distribution ¢ on K takes the shape ¢(f) = (—1)!% [, F(z)0af(z)dz
with F' continuous. We can perform integration by parts, to make sure F' is C
(or in fact C™) raising the degree of @. All in all, we may write

vf0) = Y [ P05 ozade
aB

for all f, g with support in K, where the F35 can be chosen CF.
Since ¢ is antisymmetric, we have ¥ (f, g)+¥(g, f) =0, i.e. (with f5z := 0zf)

/ (FF 4 FP8) f295=0.
K

We can therefore replace Fas by %(Fa,ﬁ — Fﬁ’a) without changing 1, and we

assume without loss of generality that Fab i antisymmetric.
Suppose that K is equipped with Darboux coordinates and consider the
equation dy = 0, written as

/ (F&’EQ(”—) (8dfa§(goh7—) + 5agag(hafr) + a&haﬁ(fagr)) =0

Let © C R?" be an open subset, and let Let ¢ : C°(Q) x C°(2) — R be
continuous and local: ¥(f,g) = 0 if f and g have disjoint support.
Consider the map C°(2) — D(2) : f — ¢(f, »), and denote the distribu-

tion ¢(f, -) by ¥. Since Supp(¢y) C
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