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Abstract

We show that the 2-group model for the string group in the paper
[DH12] of Christopher Douglas and André Henriques is isomorphic to the
Stolz-Teichner model described in [ST04].

Beware! This is a draft version which has not been debugged, and one
would do well not to take anything here on faith. I’ve tried to be explicit
rather than elegant at every turn, which results in a level of detail that is
probably excruciating for grown-up mathematicians.

In section 1, we spend a few words on free fermionic field on the circle. In
section 2, we loosely follow [Was98] (which we cannot apply directly because our
free fermions are Majorana and not Dirac fermions), and calculate the modular
operators. This is rather subtle, but probably well known. The gauge group
for these Majorana fermions is SO(n) rather than U(n). In section 3, we look
at the projective representations of the corresponding loop groups. It contains
proposition 12 (cf. [PS86]), which says that the strong topology on the von
Neumann algebra of field operators is the thing that detects the holonomy of a
loop. Without this, these notes would collapse as a plumb pudding. In section
4, we define defects and sectors for the free fermionic field, and calculate fusion
products of these sectors. The trick is to use the identification of the (abstract)
bimodule L?(A(I)) with the (concrete) Fock space F, in which the Tomita-
Takesaki involution J is simply a reflection. In this way, a bit of toil provides a
very explicit description of the sectors that live over the defects in which we’re
interested. In section 5, we reshuffle this information to yield the statement
that the weak 2-group G(V') described by Douglas and Henriques in [DH12] is
isomorphic (as a weak 2-group) to the (strict) model described by Stephan Stolz
and Peter Teichner in [ST04]. The point is not so much that these models are
isomorphic; as the name suggests, weak isomorphism is not a very strong notion.
The point is that the isomorphism is nice. In section 8, I take the liberty of
presenting you, dear reader, with some questions rather than answers.



1 Free Majorana Fermions

Following [DH12], we briefly describe free fermions, restricting ourselves to
subintervals of the circle S C R2. Classically, a fermion on S! is an element of
L?(Moe), where Moe — S is the (real!) Mé&bius band. If we have d fermionic
fields, the classical fields are L?(Moe ®g V) with V ~ R? some (real) vector
space with inner product. We denote Moe ®g V' by Moe". The embedding
St — R? induces the metric d¢ and SO(2)-action on S!, and also (by the trivial
spin structure on R?) a Spin(2)-action on Moe" that covers the SO(2)-action
on St.

This Spin(2)-action determines a polarisation, i.e. a complex structure on
the (real!) Hilbert space L?(Moe"), on which the inner product is given by

(f,9) = 5= O%(f(gb),g(gb))dqi One identifies L2(Moe" @g C) with P(Z+3)eV

by Fourier transform 2" QUi i, ® v, so that L2 (Moev) corresponds with

{felR(Z+3)erV; f(-n) = f(n)}.

(This ‘diagonalises’ the Spin(2)-action in the sense that [[§,, +_p, 10, —id_p]]®
V is the real 2d-dimensional isotypical component with weight 2n + 1.) If
D= —22’% is the (selfadjoint) generator of the Spin(2)-action, diagonalised on
I>(Z+1) asn+1 — 2n+1, then we define the complex structure by .J := isg(D),
which is well defined because 0 ¢ Spec(D). Explicitly, J(f)(n) = isg(n)f(n)
foralln € Z+ %, and we see that J, unlike D, restricts to the real Hilbert space.

Given the real Hilbert space L?(Moe"") with complex structure .J, there are
two ways to define the Fermionic Fock space F: with or without antiparticles.
Following [DH12] (and and in contrast to [Was98]) we take version without an-
tiparticles (corresponding to majorana fermions), because this leads to a SO(n)
gauge group (in contrast to the SU(n) gauge group in [Was98].) Thus

F = /\LQ(MoeV) o~ /\P+L2(Moev ®r C),
J

with Py := xg+ (D) the projection onto the positive energy part. (The C-linear
isomorphism Py L*(Moe" ®g C) — L?*(Moe") is given by € @v > cos(ng) @v
forn > 0in Z+ %, v € V). The ‘with antiparticles’ (Dirac fermion) version
would have been

F =\ L*(Moe" ®p C) ~ /\ PLL*(Moe" &g C)& A\ P_L*(Moe" @p C)*.
J

I'll write Moe""® for Moe @g V ®@g C.
If I C J C S, then the injective isometry L?(Moe" |;) < L?*(Moe" | ;) yields
a natural inclusion Cl(L*(Moe""®|;)) < CI(L*(Moe""®|;)) of the respective
Clifford algebras. The norm closure CAR(I) of CI(L?(Moe"*€|;)) depends only
on the Hilbert space structure, so we also get an inclusion CAR(I) < CAR(J).
We define A(I) := CAR(I)”, the closure of the appropriate Clifford algebra
w.r.t. the weak topology induced by the vacuum state in F. I — A(I) is a




precosheaf of vN-algebras. The weak closure of CAR(S") is simply B(F), but
the situation for CAR(I) with I¢ := S' — I open and nonempty is a bit more
subtle, and involves modular operators.

2 Modular Operators

If Ais a v.N. algebra acting on a Hilbert space F with separating cyclic vector
Q, then the operator S : AQ — F defined by af2 — a*Q) extends to a closed,
antilinear, unbounded operator, which has polar decomposition S = JAz =
A~z.J. (With A > 0 positive linear and J anti-unitary, (J¢, Jn) = (€,7).)

2.1 Example 0: matrices

Let A = B(C"™) be the v.N. algebra of n x n-matrices. A normal state is faithful
if and only if it is given by p(a) = tr(Ra) for some invertible density matrix
R > 0in A. We consider the GNS-representation L%(.A)7 which is the closure
of A, equipped with the inner product (a,b) = p(a*b). This has a natural
left *-action of A, given by a[¢] = [a€], and a natural right *-action given by
[€]a := [€R2aR"z].
Proposition 1. This is a right *-action: ([¢], [n]a) = ([{]a*, ]).
Proof. 1t is clearly a right action, the only thing to check is the involution.
([€].la) = w(RER?aR™) = e(nR¥aR3¢") = e(nR(R™*aR¥E"))
Lo 1, .
= tr(R(ER?a"R™2)"n) = ([{]a”, [n]) -

CONote that [£]a = [€a] would define a right action of algebras, but not of

*-algebras! We calculate the modular operators for (L2(A), Q).

Proposition 2. We have S[¢] = [¢*], A([€]) = [RER™Y], J([€]) = [RZ€*R™=].
In particular, the right action is given by [€]la = Ja*J[€].

Proof. Check the formula for A, sandwiched between arbitrary vectors:

(Al ) = (STS[El, ) = (S[€], Snl) = te(Ren*)
= tr(n&"R) = tr(R(RER™")"n) = ([RER™'], [n]) -

Thus A} ([¢]) = [R¥¢R*], and the formula J[¢] = [R3¢*R~3]. for J follows
from J = AzS. One easily checks the formula for the right action:

Ja*J[¢] = J([a"R*€"R™2]) = [R*(RZ¢"R™#)"aR %] = [(R*aR™?].

OSince 0 < R < 1, we can always write R = e~ with H > 0. The modular
flow off(x) = A%z A~% is then given by e ze~"H  the time evolution for the
Hamiltonian w.r.t. which R is the thermal equilibrium state.

Remark If A C B(H) is a v.N. algebra with faithful normal state given
by p(a) = tr(Ra) with R € A a positive trace class operator, then essentially

nothing changes.



2.2 Example 1: Clifford algebras

Let Hgr be a real Hilbert space. Its complexification H¢ then comes with an
antilinear involution j : v — ¥, a C-bilinear form B(v,w) extending the real
inner product, and the positive definite Hermitean form (v,w) = B(7,w). For
now, we assume that Hg is of finite, even dimension 2n. This makes things
easier, but — contrary to popular belief — not trivial.

Let He = V4 @ V_ be a polarisation, i.e. an orthogonal direct sum with
V. = V_. We denote by Py the orthogonal projection onto Vi. We can
then form the spinor representation F = Cl(H¢)/Cl(Hc)V-, i.e. the Cl(Hc)-
representation defined by left multiplication, quotiented by the smallest subrep-
resentation containing V_ C Cl(Hc). We denote 2 := [1]. The Hilbert space
Cl(Vy) = A Vi naturally includes into F, and one shows that this map is sur-
jective, so that F receives a Hilbert space structure with respect to which the
left C1(Hc)-action is unitary.

Let He = Hy @ H_ be a second orthogonal decomposition into subspaces,
this time closed under conjugation: Hy = H, and H_ = H_. Denote by Q4
the orthogonal projection onto H4. We show that F is the GNS representation
for Cl(H4) w.r.t. the vacuum state for P.

Proposition 3. If the projections P+ and Q4+ are in general position, i.e. Vi N
Ho = {0} for all 4 choices of sign, then Q) is a cyclic and separating vector for
the Cl(H4) action on F.

Proof. The projections are in general position if and only if the operators Ty :=
(P, —Q4)? and T := (Py —Q_)? are invertible. One checks that Ty +7_ =1
holds, and moreover the reflection formulae

P\Ty =P.Q_ P, =T,Py , QT4 =Q+P-Qr =T,Q4

P.Ty =P QiP-=TyP. , Q Ty =Q-P,Q-=T,Q_
P.T_ =P QP =T_P. , QT-=Q:PQr=T0«
PT —=PQ P =T P , QT =Q P Q =T.Q._.

In particular, [Ty, Py] = [T, Q+] = 0, so Ty respect Vi and H.
We show that for every v € V., there exist unique w € V_ and f € H, so
that f = v+ w. Indeed, f = QLT 'P,v and w = P_f do the job:

Pf=P.Q.T'Pio=T"'P,Q,Pov=T"'T_P,v=v.

Uniqueness is clear: Py : Hy — V, is injective because Vi NHy = {0}. In the
same vein, for any w € V_, the unique f € H4 and v € Vi such that v+w = f
are given by f = Q4+ T 'P_w and v = P, f.

This ensures that  is cyclic for Cl(H). Indeed, assume with induction that
all the states in A"V, are in CI(H,)Q. Let v € Vi and & = 9 (v)& € ATV,
Write f = v+w with f € Hy and w € V_. Then £ = ¥ (v)&n = ¥ ()& — ¥ (w)&o,
and since (w)&p is in A"V, (push ¢ (w) to the right untill it hits Q while
keeping track of the commutators), we have £ € CI(H,)Q2. Similarly, Q is cyclic



for C1(H_), so because C1(H) and Cl(H_) are each other’s graded commutant,
Q is also separating for Cl(H.). O

2.2.1 Modular operators for Clifford algebras

An orthogonal transformation u € O(Hg) can be extended to a unitary u or
antiunitary w operator on Hc¢ that commutes with complex conjugation 7, and
all unitary or antiunitary operators commuting with j are of this form. The
unitary operator induces a linear *-automorphism of C1(Hc) because it preserves
the bilinear form, B(uf,ug) = B(f, g), whereas the antiunitary operator induces
an antilinear *-automorphism of Cl(H¢) because B(uf,ug) = B(f,g).

If, moreover, u maps V, to Vi and V_ to V_, then «, induces a lin-
ear (or antilinear) map on F = Cl(Hc)/Cl(Hc) - V_. It is given by A(u) :
O(f1) . (f) = Y(ufr) ... Y(ufn)Q, regardless whether w is unitary or an-
tiunitary. Unitary (antiunitary) maps that respect both Py and j correspond
to unitary (antiunitary) operators on Vi, and the ‘canonical second quantisa-
tion’ Uy (V4) — UL (F) is a group homomorphism. The Clifford transposition
T:(f1) .. () = Y(f1) ... (fn) obviously doesn’t preserve Cl(Hc¢)V_, but
through the identification F ~ AV, it still defines a unitary operator on F.
One checks that it is given by 7 = k" 1A(i1), with x the Klein transformation.
The Klein transformation x multiplies by 1 on the even and by ¢ on the odd
part. It has the property that a and b supercommute, a - b = (71)‘“W’|b - a,
if and only if ¢ and kbs~! commute. For antiunitary operators, we define
Au) =70 A(u) = k™ A(iu).

We extend this procedure to arbitrary linear (or antilinear) operators o on
He that respect j and Pr. Write ¢ = u6'/? as a product of an (anti)-unitary
and a positive operator, both respecting j and Py (this can essentially be done
on V;). Then t +— 6% is a 1-parameter group of unitaries, where § = e~
for H = —log(d). Consequently, A(H) := iLoA(e~") is selfadjoint, and
we define A(6Y/2) := exp(—3H), and A(o) := A(u)A(6'/2). Since our Hilbert
spaces are finite dimensional, the map z +— (6% f1) ... (6% £,)Q is well defined
and holomorphic on C, so that A(6'/2) is simply given by its induced action on
F = AV, AGYY(f1) .. () = (Y2 f1) .. .ap(8"/2f,,). In particular, A
extends to a homomorphism on Gl (V7).

Proposition 4. The modular operators for the representation of Cl(H4) on F
defined by Py are given by S = k' A(ic), AY2 = A(6'/2) and J = k' A(iu),
where o = ud'/? = §=/2u is the polar decomposition of the antilinear operator

P P P Q4P
a::j(+Q+ I Q+ +),

T, T
given by
T T
oY= |2EP —P_
Tt T



and

w=j P_Qi Py n PLQi P
VILT-  JTiT- )

where Ty = (Py — Q)% and T_ = (Py — Q_)? commute with Py, Q+ and
satisfy T +T_ = 1. The operator 6'/? posesses a basis of eigenvectors vf; such
that vqf eV, vy € V_, the eigenvalues for vf; under T and T_ are sin2(¢) and
cos?(¢) respectively, 51/21);[ = |tan(¢)|vy, and (51/21); = |tan(¢)|tv_, where
@ is the angle between Vi and Hy (or V_ and H_) along vi (or v®). For one
angle ¢, the 2-dimensional vector space [[v;',v;]] is therefore closed under Py
and Q4. The operators 6*/2 and u commute with j, §'/2 > 0 and ju is the
unitary involution exchanging v('; g

Proof. Let o be the antilinear operator o := jo (P+Q+T;1P_ +P.Q.T~'P,).
jo maps v € V to the unique w € V_ such that v+w € H4, and w € V_ to the
unique v € V, with the same property. In particular, it is the identity on H,
and it squares to one, 02 = 1. Since jPy = Prj, jQ+ = Q4j and jTy = T4,
we have [0,7] = 0, [0, P+] = 0 and 0Q; = jQ4. Let 0 = ud'/? be the polar
decomposition of o. Since 02 = 1, ofo = § is the inverse of oot = udul. This
shows that o = §'/2u = u6~%/2, and thus u? = 02 = 1.

Its second quantisation A(0) = k™' A(io) is antilinear on F, and for f; € H.,

it maps (recall that cQ = jQ4 ) the vector ¢ (f1) ... ¥ (fn)Qto ¥ (f,) ... ¥(f1)Q.
It therefore agrees with the operator S : af) + afQ defined on the abstract

CGNS-representation of H,. Because A(ué*/?) = A(u)A(5'/?) is again a polar
decomposition, we have J = A(u) = k' A(iu) and A = A(9).

We proceed to calculate the polar decomposition. Using the reflection for-
mulae in the previous proposition, one calculates § = ofo = T+T:1P+ +
T_T_:lP_7 and notes that [j,6] = 0. One then calculates u = §'/20, yield-
ing the above result.

This is best understood when we diagonalise Py, P_, T, T_ and 6'/2. Let
vy € Vi be a simultaneous eigenvector. Then T v, = P Q v, = c*vy, so
that ¢ = (v,Q; v, ) = cos?(¢), with ¢ the angle between V; and H, along the
vector v. Similarly, the eigenvalue of T, for v € V is sin?(¢), so the eigenvalue
for 61/2 is |tan(¢)|. Because ju is invertible, exchanges V, and V_, commutes
with T, and T_ and satisfies (ju)6'/? = §=/2(ju), the vector v_ := juv, in
V_ is again a simultaneous eigenvector, this time with eigenvalue |tan(¢)|~! for
5172, O

2.3 Example 2: Infinite dimensional Clifford Algebras

We now move to the realm of infinite dimensional Clifford algebras, i.e. we drop
the assumption that Hy is finite dimensional. In this case, proposition 4 remains
valid (except for the ‘basis of eigenvectors’ part of course), but there are some
details to look after.



We now require that the polarisations are by closed subspaces, and that
the operators Ty and T_ are injective, but do not necessarily have a bounded
inverse. (0 is allowed to be a bounary point in the spectrum). We define F as
the closure of Cl(H¢)/Cl(Hc) - V—. The C*-algebra generated by Cl(Hc) is the
CAR-algebra. On unitary and antiunitary operators, canonical quantisation is
well defined and a group homomorphism, and for unbounded positive operators
we can still define A(61/2) = e~ 2AH) with H = —log(é). For o = ué*/2, the
equation

(0&n) . Y(06)Q = Au)A(S ) (&) .. ¥ (&)Q

now holds (and makes sense!) for & ...&, € HE, i.e. vectors such that ¢ — §*¢
is smooth. By a theorem of Stone and Garding, HZ is dense in Hc, so A H
is dense in F. The above equation then holds on the domain of A(5'/2) by
continuity. Rather than diagonalising 7'y, one uses its spectral measure and
the equation T +7_ = 1 to define the operators o, 6'/2 and wu, and because
0@+ = jQ4, the domain of § (which is the domain of o) containt H,. The
equality ¥(f,,) ... ¥(f,)Q = A(u)A(5"/?) follows, showing that S = JAY? with
J = A(u) and AY? = A(6/?) with u and 6 as in proposition 4 are the modular
operators.

2.3.1 Modular operators for Majorana Fermions

Roughly following the second proof of theorem 14 in [Was98|, we implement
the above in the situation Hg = I'r2(Moe ® V'), where the vacuum polarisation
He = V4 @ V_ is given by the projections Py and P_ on the positive (negative)
part of the spectrum of —22‘%. The Fock space F is thus the closure of A V.
The other polarisation H¢ = H, @ H_ is given by an interval I C S'. We
require that both I and its complement I¢ have nonempty interior. Then H, =
{s € Hc;, s|re =0} and H_ = {s € Hc;, s|r = 0}, and the corresponding
projections are Q4 and Q_. We set js(¢) = 35(¢), so that jQ+ = Q+j and
jP+ == Pfj

Remark 1. Since the vector space V' does not play any role in the determination
of the modular operators, we leave it aside until the end of this section, and just
keep in mind that everything we do should be tensored with V' ~ R™.

If S* — S' is the twofold cover of the circle (which is an O(2)-torsor and
thus a Pin structure), then a section of Moe is a smooth function s : ST SR
such that s(—e™X) = —s(e™X). We identify C>°(S*) with I'(Moe) isometrically by
associating to g € C°°(S1) the section s(e™X) = eXg(e?X). On L?(S'), we have
D= I—Qiﬁ, so that Vi = Hol(A}) is the space of holomorphic functions on the
complex disc A that extend to L2-functions on S'. Its orthogonal complement

V_ = Holp(A_) is the space of holomorphic functions on A_ = CP! — A
which extend to L2-functions on S, and that furthermore satisfy g(co) = 0.

(SoleVy, 1¢V.)



The spaces H, and H_ are the L?-functions on S' that disappear in I°¢
and I respectively. In the following, we will take I to be the right semicircle

I={e?; ¢ c|-n/2,7/2]}.

Definition 1. The antilinear involution j takes the shape jg(e!?) = e~1%g(e'?).
It corresponds to the map Hol(Ay) ® Holg(A_) that maps g(z) to jg(z) =
271G(z71). There are two possible ways to lift the left-right reflection €'®
—e7 from S to S, namely si(e’X) = +ie"X. They yield the involutions
s1g(z) = +iz7lg(—2z71). Similarly, the up-down flips are given by Fyig(e'?) =
+e g(e~1?).

2.3.2 Cayley Transform

In order to diagonalise T, = (P, — Q4 )?, we return to the origin of S* as the
conformal compactification of the real line. By means of (i times) the Cayley
transform I, i.e. the Moebius transformation

Z—1

W+
? T —1
zZ+1

A
w—1

I'(z) = I w) =

we map the unit disc Ay = {z € C; |z| < 1} to the lower half plane H_ = {z €
C; Im(z) < 0} and vice versa. The Cayley transform induces unitary tranfor-
mations on the boundaries of these domains, Ur : L*(S*,d¢) — L*(R,dz) and
Upt: L2(R,dx) — L?(S*,d¢), by

(Urg)(x) = ﬁ.g(—i“?) (UL f)(e) = 2T f(ﬁ”’—i).

: - fli— -
T —1 T —1 et 4+ 4 et +q

(We used €' = fzi—fz and d¢ = x;—f_ldas. The prefactors differ by v/27 from the

expected v/2/(z £ i) because of the normalisation.) These are the restrictions
to the boundary of the corresponding linear maps Ur : Hol(A4) @ Holg(A_) —
Hol(H_) ®@Hol(H ), where Hol(H_) (resp. Hol(H,.)) are the holomorphic func-
tions on the lower (upper) half plane that extend to L? functions on R. (For
g— € Hol(A_), Ur is holomorphic at ¢ precisely when g_(c0) = 0, cf. prop. 5.)

On L%(R,dx), the complex conjugation jg(e'?) = e~g(e'?), the left-right
flips s1g(e’?) = +ie"@g(—e~?) and the rotation rog(e'?) = e'®g(ei(@+29))
(which covers the rotation over 2a on S*) are given by

UrjUp ' f(z) =i f(z),  UrseUp'f(z) = +g(-a),
cos(a)r — sin(a))

sin(a)x + cos(a)

UrraUs' () = ! s (

sin(a)x + cos(a)

2.3.3 Hilbert transform
For f € L*(R,dz), we define the Cauchy transform

YU S A (C)

= dx .
1) 2mi J_ o x — 2 v




Because —L is uniformly bounded in x by [Im(z)|~! for each z ¢ R, fis
holomorphic on C — R. If f = Upg with g a bounded function on P, then
f(x) decays as (14 22)~1/2, so that f is bounded outside a neighbourhood of
R. In particular, f is holomorphic in co. One checks that for f = Urg with
g € C°(SY), we have

lim flz+ie) — f(z —ie) = f(x).

We show that for f = Urg with g € C*(S'), the limit with the opposite
sign also exists, so that lim. o f(z + €) and lim. o f(x — i€) are well defined
functions.

R A 1 e 2t
leig)lf(x—kie)—kf(x—ie) = lgrg)%[mf(t+x)mdx
—1

_ e > / 2 2
= !%QWilwf(t+x)log(t +e)dt

2_—7; /_O; f/(t + ) log(t*)dt .

The integrals are finite because the logarithmic singularity at * = 0 does not

contribute to the integral, and because f’ decreases as ~ ﬁ for z — +o0.

Now if g € C"*2(SY), then f(") ~ (1 +22)~(F1/2 50 one can take derivatives
in the above equations and see that lim, g f(z + i€) is a C"-function in L?(R).

Proposition 5. Let g € C*°(S'). Then UrPyg and UrP_g are smooth func-
tions on R that extend to vy € Hol(Hy) and v— € Hol(H_) respectively. They
are given by

vi(2) = =@, v-(2) = f(2)lm,

and are the unique bounded holomorphic functions on Hy and H_ that extend
continuously to R, satisfy f = vy|r +v_|g with f = Urg and go to zero in +oo.

Proof. 1t is clear from the above that vy (2) :== —f(z)|u_ and v_(z) := f(z)hm+
are bounded holomorphic functions that extend continuously (even smoothly)
to R, go to zero in o0, and satisfy f = vy + v_|g. Any other pair 04,0_ with
these properties satisfies (v — 04 )|r = (0- —v_)|R, so that the function defined
by the Lh.s. on H_ and by the r.h.s. on H; is continuous, hence holomorphic
and C, and thus zero because it is bounded and zero at infinity.

If g is smooth on S!, then so are P, g and P_g. They extend to holomorphic
functions g4 and g_ on the unit disc A, and its complement A_, which are
bounded because they extend continuously to the boundary. Now Urg; =
£g+(—iz—“) is holomorphic on H_ because -~ and Z+§ are, and goes to

zZ—1 zZ—1 zZ—
zero for x — zo0o. The function Urg_(z) = Z—\/jg,(—zzfz) is holomorphic on
H, — {i} for the same reason, and continuous (thus holomorphic and bounded)
H. because g_(o0) = 0. It too goes to zero in co. Because such functions are

unique, this concludes the proof. O




Remark 2. If s(c’?) = Zl+z e, then Urgy (—i) = 3iy/Tay is the coeffi-
2

cient of ‘our’ vacuum’ s(¢) = €'®/2 which has minimal positive energy 1. If we
had antiparticles in our theory (which we don’t), then Urg_ (i) = —%\/Eaf%

would have been the coefficient of the ‘other vacuum’ s¢ = e~*%/2 with maximal
negative energy —1.

We show that the polarisation He = H4 @ H_ into function living on I and
I. and the polarisation H¢ = V4 @ V_ into positive and negative energies are in
general position, i.e. Hy N Ve = {0}. Suppose that f € L?(S!, d¢) represents a
section in V. NH . Then also ¢* f € V., where ¢ € C>(S1). If ¢ is supported
in [—¢,¢] and f in 7=1(I), then ¢ * f is supported in I, whch is I thickened
by e. But since ¢  f is the boundary of a holomorphic function (there are no
negative Fourier components), this means that ¢ * f must vanish identically.
Since ¢ * f can be made arbitrarily close to f in L?(S'), we must have f = 0.
In the same vein, one shows that the other 3 intersections are {0}.

This shows that we can define an antilinear map o : V; — V, unambiguously
by o(vy) = ju_ iff vy +v_ € H(I), and that T_ = (Py — Q_)? is an injective
bounded operator.

Finally, we’ll need the following nice property of the Cauchy transform:

Proposition 6. The Cauchy transform is an intertwiner between the unitary
representation of PSL(2,R) on L?(R) and the representation on the direct sum

Hol(H, ) @ Hol(H_), both given by the formula g = (a b), Ug-1(f)(2) =

c d
1 +b
cz+d f( SZZer ) :

Proof. Implement the change of variables © = Z;’Idb, dx = rar + a2 sdy in
p 1 1 e (z)
Uptf(2) = 2micz+d | o x— az+b de
S cz+d
to obtain ) n
— 1 o0 df(ay+d)
U . - cytd- fey+d’ g
/) 2mi / y—z Y

2.3.4 Diagonalisation of 7'y and 7_

The key to finding the modular operators is diagonalising T = Q4+ P, Q4 +
Q- P_Q_. This amounts to diagonalising Q', P Q",, where Q, = UrQ+U; " is
the projection on L?(R*), and we have seen that P’ = UprP_Up' on L?(R) is
given by P f(t) = lim.jo f(t + i€), i.e

P =—1 .
1) 27rzel¢rtr31/ Ut x—t—zex

10



Let V : L?(R) — L?(R) @ L*(R) be the unitary given by Vf = (f1, f.) with
fr(t) = et/2f(et) and fi(t) = et/?f(—e?). If f € Hol(H, ), then z +— e*/2 f(e?)
is holomorphic on the strip Im(z) € (0,7), and f, and if; are the boundaries in
Im(z) = 0 and Im(z) = 7. If f € Hol(H_), then z ~— e*/2 f(e*) is holomorphic
on the strip Im(z) € (—,0), and f, and —if; are the boundaries in Im(z) = 0
and Im(z) = —m.

The projection @', goes to VQ' V!, which maps (fi, f») to (0, f,), and
VQ"_ V=Y maps (fi, f-) to or (f1,0). We write

_ 10 y -1 (00
VQ+V (0 0) and VQ_V —(0 1)

in the new basis. We now calculate
pPrr Pfl
VP/ |’ t= (Plr pll)
Using the substitution x = e* for > 0 and x = —e" for s < 0, and multiplying
numerator and denominator by e~*, we calculate

P fim [ N,
T A t — Sy .
=) elﬁ)l27ri f(u)(e“ t—1—dee? > "
. (u t)/2
P"fit) = —lim-— d
=~ i) elﬁ)lQm/ filu (e" t4 14 dee™ t) “
1 e(u—1)/2
Pf.(t) = lim— - —— | d
=1 (®) elfol2m/ f(u)(e“t+1—zeet> "
i (u—t)/2
PYfi(t) = —lim— d
240 clo 2m/ Jilu ( —1+iee™ t) “
If we define
1 u/2 1 u/2
Ser(u) == ¢ cer(u) := ¢

omi et — 1 + i’ omiet + 1 +ie

then PUf)(t) = — limeo{(Sce—t, fr(® +1)). Since t is a fixed value, this amounts
to PUlfi(t) = —limg o(se, fr(® + 1)), and one obtains similar expressions for
the other 3. Since the Fourier transform of a convolution is the product of their
Fourier transforms, we calculate the Fourier transforms of s, and ¢.. (And drop
the prime on the e.)

Proposition 7. For et >0, €= < 0 and all € respectively, we have

—1 (1 —ie)~tk=1/2¢mh R SO U ie)hm1/2emmk
\/ﬂ emk + e—Tk \/ﬂ ek _|_e—7rk

—i (1 +ie)~th=1/2

m ek + e—Tk

with F the Fourier transform F f(k) = r f_ e~ f(z)dw

Fse+ (k) =

Fe(k) =

11



Proof. The function s, is square integrable and meromorphic, with poles when
e = 1—ie, ie. for uy, = 3log(l + €?) — iarctan(e) + 2mmi, m € Z. The
residue of u — e~"*¥s, (u) at the pole uy, is 5 (1 —ie)~(h+1/2) (—e2™ )™ where
(1 — 7€)~ +1/2) i5 shorthand for e~ (#*+1/2)uo,

If & > 0, then we complete [—R, R] to a contour along the lower semi-
circle ¢ — Rcos(¢) — iRsin(¢), ¢ € [0,7]. On semicircles with radius R =
(2m + 1), the function s, is uniformly bounded, whereas e~** decreases as
e~ Rksin(®)  The integral along the lower semicircle vanishes, and Fs.(k) =
\/% J75 e s (u)du is equal to minus (because the contour is clockwise) 2mi
times the sum of residues in the lower half plane. These are the residues at
m < 01if € > 0, and at m < 0 if € > 0. This is a geometric series, yielding the
above formula for Fs.. For k > 0, the contour closes clockwise along the upper
half plane, yielding the same result.

The other function ¢, is done in an analogous fashion, the poles being u,, =
1log(1 + €%) + i arctan(e) + (2m + 1)7i. O

Because the Fourier transfer takes convolution into pointwise multiplication,
we have FP™ f.(k) = 2rF(f,)(k) lim.—4o F(se)(—k), and similar expressions
for the others. (We've exchanged a limit and an integral to obtain this, which
is allowed because for bounded f,., the limit limeto(s, f,.(® + t)) is uniform in
t. To see this, one splits the integral into a part from ¢ — /€ to t + /€ and the

remainder.) Thus, with the convention X := (F & FVUr)X (F® FVUr)™ !, we

have:
N e 7 . e Tk —1
Tk —7mk Tk —7mk Tk —7mk Tk —7mk
Po= (e e FRTE ) By = [ FET T )
ewk_;'_efvrk e'rrk_;’_efwk ewk_;’_efwk e'rrk_;’_ef'rrk
. . . . . . s km -
We now see that T is diagonalised in this basis: Ty = ekﬂiﬁl and T_ =
—km

_€e
ek-;r +e— kT

1. The formulee in proposition 4 then easily yield:

—~ 1 —i(ek” _ e*kﬂ)
17 = (0 -1

krn__—km kr__—kn
— Iz 2 o T T Fr = — e
U = erT4e efT+e 55 _ erfT+e erT4e
Jju = kr ' _—kw _9 =\ . kr_ _—kn o2k | =2k .

,L'P Ze e
elmr_;'_e—k-;r ek7r+e—k7r ekw+€—kﬂ ekw+e—kw

Since s/ f(x) = £f(—x), the two left-right reflections take the shape

~ 0 1
One then checks, by simply multiplying 2 x 2-matrices, that u = —ijsy (P —P-).

Combining this with proposition 4, we obtain

Lemma 8 (Tomita-Takesaki Involution). If I is the right semicircle, then the
antilinear Tomita-Takesaki involution J : A Vi — A\ Vi is given by

J = HilA(jS_;'_) .

12



The V-component Pi(jsy)Py of this operator maps the boundary of g €
Hol(A) to the boundary of z — —ig(—%), also holomorphic on A, which
is —i times its Schwarz reflection in the imaginary axis.

The modular evolution A” is also readily seen. We only need the action of
6172 on V., which is glven by P+61/2P+ = e’”“PJr Thus P+(5”P = ezﬂk”P
that F=1§ f(t) = F~1 f(t+277) on V... Considered as a holomorphic functlon
on the strip Im(z) € (0, —im), this is just a shift to the right. Transforming
back along V, we see that 6°7 is the unitary dilation by €*™™ on Hol(H_), i.e.
f — € f(e*7z). Finally, transforming this by Ur, we obtain the unitary
induced by the modular flow from —i to i.

Proposition 9 (Modular Flow). The modular evolution on F = A\ Vy is given
by AT = A(6°T), where the restriction to Vi of 67 is

57 g(2) = 1 ( cosh(77)z + isinh(77) ) '

—isinh(7w7)z + cosh(nT) I\ =i sinh(77)z 4 cosh(wT)

g is a holomorphic function on the unit disc, the boundary of which represents
the section S* — C s(x) = eng(eQiX),

In a sense, the nicest way to present the modular operators is on Hol(H_),
where the antilinear involution is reflection in the real axis followed by complex
conjugation, and the modular flow is the dilation subgroup of SL(2, R).

We check the behaviour of the modular operators if we rotate over an angle
a. Choose I = [-7/2 + a,7/2 4 a] with a # 0. Since r,/5 covers the rotation
over a, we have Q% = ra/gQir_a/g. One checks that r,/2 commutes with
P, and j, so that the formulee in proposition 4 yield uq = 7o 2uor_q/2 and
0o = Ta/200T—a/2- SO Uy = —ijse With 549(€'?) = ie—i(¢+a)g(—e—i(¢+2a)).
In particular, the modular involution for the complement of a semicircle gets a
minus sign.

Corollary 10 (up,down,left,right). The modular involutions for the left and
right semicircle S} = {€'?; ¢ € [7/2,3n/2]} and S} = {'?; ¢ € [-7/2,7/2]}
are Kk TA(S) and k~1A(=S), respectively, where S = —jsq,

Sg(e'?) = ig(—e ™).

The modular involutions for the upper semicircle S§ = {ei*; ¢ € [0,7]} and
the lower semicircle S* = {e'®; ¢ € [~m, 0]} are Kk 'A(F) and xk*A(—F),
respectively, where F = js. s,

Fg(e'?) =g(e™).
The Tomita-Takesaki involution J = k1 A(F) implements an isomorphism

between the abstract A(S)-bimodule L?(A(SY)), the GNS-representation w.r.t.
the vacuum, and the concrete Fock space F.

13



Proposition 11. Let J = k *A(F). Then L*(A(SY)) — F : [a] — aQ is an
isomorphism of Hilbert A(S%)-bimodules. The left and right action of A(SL)
on F are given by a-€& = a€ and € - a = Ja*JE, and the positive cone P by
P={a-Q-a*;aec A(SL)}. The left and right action on L*(A(SL)) are given
by a- €] = [a€] and [£] - a = [EAY2aA"2] (cf. prop. 1), where A is the unique
modular operator on L*(A(SL)).

Proof. Because Q is cyclic and separating for A(S?), the map [a] — aQ yields
an isomorphism L?(A(S1)) — F between F and the GNS-representation of
A(SL) for the ground state. This means that the left action is automatically
respected. Because Ja*J is in A(S1)" and J? = 1, the right action &-a = Ja*J¢
commutes with the left action on F. The right actions are intertwined because

Ja*JbQ = SA™Y2a* AYV28b0 = SAT2¢* AY2p* Q) = bAY 2qATY/2

This shows that the Hilbert bimodules are isomorphic. O

3 The Path Group

Define the path group PO(V') as the group of continuous, piecewise C'! functions
g:R — O(V) such that g~1¢'(¢ + 2m) — g~ 1¢/(¢) in Lie(O(V)) is independent
of ¢. If the group homomorphisms s,t : PO(V) — O(V) are the evaluations
at 0 and 27 respectively, then the loop group QO(V) < PO(V) is the group of
functions g with s(g) = ¢(g).

An element g € PO(V) defines an orthogonal transformation of the real
Hilbert space L? (Moev) by left multiplication, and thus an automorphism oy
of the Clifford algebra CI(L?(Moe""%)). The same goes for C1(L?(Moe"" |;)),
and the automorphisms are compatible with the inclusions.

Remark 3. More generally, if P — S! is a principal G-bundle and V a G-
representation, then I'(ad(P)) acts on I'(P x ¢ V). For Moe and V, the structure
group Z/27 acts by =1 on V', which twists the fermions but not the loop group.
Twisted loop groups may pop up when S! is an orientation-flipping loop
in a non-orientable d-dimensional Riemannian manifold M, P is the restriction
of the orthogonal frame bundle to S', and the vector bundle is the restriction
of the tangent bundle to M. For d = 2n + 1, the situation is similar to the
one we have here: the monodromy (up to SO(d)) yields the +1 action, and
thus the untwisted loop algebra so(2n + 1). For d = 2n, the monodromy (up
to SO(d)) yields conjugation by a reflection, and thus the twisted loop algebra
corresponding to the unique diagram automorphism of D,, = so(2n).

3.1 Discontinuous loops

We show that the von Neumann algebra A(S'), which is the strong closure
of the C*-algebra CAR(S!) w.r.t. the topology induced by the vacuum state
¢o(a) == (Q, 7p, (a)N2), is sensitive enough to know the difference between paths
and loops.

14



Proposition 12. Every piecewise C* path g € PO(V) defines an automorphism
A, of the C*-algebra CAR(SY). The following are equivalent:

- The shifted vacuum A} ¢q is a normal state.

- The automorphism A, is induced by a unitary operator Uy on F, Ay(z) =
Ugng_l for all x € CAR(S?Y), and thus induces an automorphism of the
von Neumann algebra A(S?).

- The path is a closed loop, g € QO(V).

Proof. Because multiplication by g is unitary on L? (Moev’(c) and the Clifford
algebra norm depends only on the inner product, g extends to an automorphism
A, of the CAR-algebra CAR(S') (the norm closure of the Clifford algebra).

According to Segal’s quantisation criterion (p. 480 of [Was98]), the GNS
representations F for ¢y and F' for A7 ¢o are unitarily equivalent if and only if
[9, P4+] is Hilbert-Schmidt. Since both states are pure, and since the normal pure
states on A(S') ~ B(F) are precisely the vector states in F, this is equivalent
to the pure state ag¢po being normal.

Also, according to p. 480 of [Was98], it follows from this that A, is induced
by a (projective) unitary on Fock space, Ay = U, o U, !, if and only if [g, P]
is Hilbert-Schmidt.

To complete the proof, then, we need only show that multiplication by g is
Hilbert-Schmidt if and only if g does not jump. We identify g with its multi-
plication operator g € Ues(H), write H for L? (Moev’c) and P, for the positive
energy projection, and define the restricted unitary group

Ures(H) := {u € U(H); Tr(|[u, Py]|?) < oo} .

Pick coordinates on V' and write g = 2?3:1 9ij(¢)E;;. Identifying H with
12(Z + %), multiplication by g¢;; goes to convolution of the fourier coefficients.
Now E;; commutes with Py, so we have

(gmj - P@j) (n) = > (Gm>0— 0n>0)dij(n — m)ih;(m).
mEL+ %

Since the E;;’s can be taken out, we have
2
TT‘[Z 9i; Eij P+]‘ => Tr ((gi5, P[Py, g5;]) -
ij ij
Now since (2", [gij, P+]2™) = (0m>0—0n>0)Gij(n—m), and g;; is real, the above
trace reads
TT’[Z 9B, Al = Y Y Gij(n—m)gij(m — n)(0ms0 — 6ns0)”
iJ iy m,nEZ—i—%
= 2> > i+ m)gy(—(m+n))

ij m,n€Z0+%

= > > Iklauk)P.

ij kez

’ 2
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If g € QO(V) is C', then Y, ., |k|?9(k) = (¢, ¢’) < o0, so the unitary defined
by left multiplication on H certainly lies in Uyes(H).

Remark 4. At this point, one can even make due with Sobolev-1/2 functions.
We restricted to piecewise C! for a good reason though: there are discontinuous
Sobolev-1/2 functions that do indeed lift to unitaries! See [PS86], ch. 6.

The continuous 2w-periodic function ¢ — |¢| on [—m, 7] has Fourier de-
composition k — (2(—1)* — 2)75, so continuous piecewise C* functions also
define unitaries in Uyes(H). (Continuous piecewise C! functions are sums of
C'-functions and multiples of translations of ¢ — |¢|.)

On the other hand, functions which are not 2m-periodic never fulfill these
requirements. The function ¢ — ¢ — m on [—m, 7] has Fourier decomposition
k— %1)% Now if g is not a loop, i.e. if g(27)g(0)~! = exp(27X) € SO(V)
with X # 0, then g can be written as g(¢) = exp(2n¢X)g(¢), with g(¢) a
piecewise C! loop. If g would lift to PU(F), then so would exp(27$X ), which
cannot be because the sequence ), _, ﬁ diverges. O

Intuitively, this says that even though the C*-algebra CAR(S') can not tell
the difference between piecewise C'! functions with and without gap (as far as
it’s concerned, they both yield automorphisms), the quantum probability space
that consists of the algebra CAR(S') equipped with the ground state ¢o(a) :=
(Q,7p, (a)§2) can: if ay is the automorphism induced by g € PO(V), then oo
is normal w.r.t. ¢¢ if and only if g does not jump.

3.2 Representation of QO(V) and QSpin(V)

We denote by Q.0(V) <QO(V) the normal subgroup of based loops, i.e. loops
g: St — O(V) such that g(1) = 1. Then QO(V) = Q.0(V) x O(V), where the
semidirect product is by the adjoint action of O(V'). If Spin(V') is the 2-fold
cover of SO(V) (also for dim(V') = 2), then based loops g in O(V) lift to based
loops in Spin(V) if and only if 7 (g) is even, which for dim(V') = 2 amounts to
g being contractible. We can thus consider Q.Spin(V') as a normal subgroup of
order 2 (equal to Q.0(V)? for dim(V) > 2), and write Q.O(V) = Q.SO(V) =
Q.Spin(V') x Z/27.

Proposition 13. Let g — [Uy] be the projective unitary representation of
QO(V) on F defined above, and let d := dim(V'). Then the action of U, on
F = Fo @ F1 respects the Z/2Z-grading if [g] € m1(O(V)) is even and flips it if
it is odd; grading is preserved if and only if g € QSpin(V) x O(V) < QO(V).
The corresponding projective representation of the Lie algebra Qso(d) is a
linear unitary representation of the Heisenberg algebra for d = 2. Ford = 3 and
d > 5, it is a unitary representation of the affine Kac-Moody algebra 50(d) with
central charge ﬁ For d = 4, it is a unitary representation of 50(3) ®p 50(3)

with central charge % <) %,

Proof. Choose an orthogonal basis {¢*; a = 1,...,d} of V. From this, we
derive the orthogonal R-basis of the real Hilbert space Hg := L*(Moe ®g V)
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consisting of the sections
c*(n) == V2cos(np) ®1p* and s%(n) := V2sin(ng) @ Y*

for n > 0, nGZJr%, a=1,...,d.

The complexification H¢ := Hr ®r C inherits from Hg the unique hermitean
and bilinear extensions of the real inner product on Hg C Hc, which we denote
by (-, -} and B(-, -) respectively. The elements ¢*(n) and s*(n) of the Clifford
algebra Cl(Hc, B) satisfy the relations

{c*(n), (M)} = SapOpm , {5°(n), 8°(M)} = 64p0nm and {c*(n),s*(m)} =0.
The operators ¥**(n) := % (c*(n) +is*(n)) and ¥*(n) = % (c®(n) —is%(n)),
corresponding, recall that n > 0, to the complex sections ¢ — exp(ing) and
¢ — exp(—ing) respectively, therefore satisfy

{ve(n), v (m)} =0, {¥*(n),v"(m)} =1, {¥**(n),4"(m)} =0.

We now remember that Hc is an S'-representation with generator D, and
as such splits into positive and negative energy parts. We write He = Vi & V_,
where V. and V_ are the images of the positive and negative spectral projections
P, and P_ of D. The ¢ (n) with n > 0 form a basis for V,, whereas the 9*(n)
with n > 0 constitute a basis of V_. The Fock space F° = Cl(Hc¢)/(Cl(Hc)V_)
is a quotient of Clifford representations, and as such a Clifford representation
itself. Since B(V,,Vy) =0and B(V_,V_) = 0, the inclusion A V. = CI(V}) —
Cl(Hc) yields an isomorphism AV, ~ FY. Since V, is a Hilbert space, this
endows F° with a Hermitean form, and the Clifford representation extends to
its closure, the Hilbert space F. It is a x-representation w.r.t. the involution
V1 ...Up =T ...0, of Cl(Hc).

The projection Py : He — V4 is bijective when restricted to Hg, and endows
‘Hr with the complex structure J = isg(D). The hermitean form (w.r.t. J) is the
unique one that agrees with the real inner product on the ‘symmetric’ sections,
i.e. the ones for which s(—¢) agrees with s(¢) after parallel transport. We could
use this to identify F with A ; L?(Moe ® V), but we will not make use of this.
Instead, we use the isomorphism of F with A V. to give an explicit basis for F;

W (nk,) - (1) T (ng,) T (nf) ©

with ng > ...>nf foralla=1,...,d.

An orthogonal transformation v € O(#Hg) induces an automorphism c,, of
Cl(Hc). If there exists a U € U(F) so that o, (A)v = UAU v for all v € F,
then U (which is determined up to S!) is a second quantisation of u. For
example, if the complexification of u happens to respects V., then the induced
unitary on F ~ AV, is called the canonical quantisation of u. In particular,
since the action of the constant loops commutes with rotation, the O(V) action
is canonically quantised.

The Lie algebra C15°(Hc) of even Clifford elements of degree < 2 acts by
commutation on H¢ C Cl(Hc¢). For instance, v - w acts as X — [v-w, X| =
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vB(w, X)—wB(v, X). Introduce the notation ¢)**(—n) := 1%(n), so that ¥**(n)
is the Clifford element corresponding to e? ® 1@ for all n € Z + % Note that
for a # b and k € 7Z, the expression

E (k) =Y 4*(k —n)v’(n)

nez

is well defined on F°, and that E%(k)Q = 0 for k£ > 0. Using the Clifford
relations and the fact that £ (k)v only involves finitely many terms if v is one
of the basis elements of F, one sees that [E®(k),¢%(m)] = —*(m + k) and
[E(k), % (m)] = ¥*(m + k), so that commuting with the densely defined, un-
bounded operator E% (k) on F corresponds to the action of e =% (eyp, — epq) €
Lso(V) @ C. Because the Clifford algebra is generated by Hc, and because
the action (by commutation) of c(E®(k), E“Y (K')) = [E%®(k), B (k)] —
oot BV (k + k') — 6o E¥P(k + k') on He is trivial, ¢(E®(k), E*Y (k")) must
be an element of the commutant of Cl(H¢) on F, which is C1. In other words,

c is a cocycle, and its values are determined by evaluating in the ground state
Q.

Using £ (k)T = —E%(—k)', the Clifford relations, and the fact that 1)%(n)Q =
2'd

0 for n > 0, and the fact that the vectors E®*(k)() are eigenstates of D = 2L
with energy 2k and therefore orthogonal unless k agrees, one calculates

(B (k), BV (K)) = (Q,[E® k), BV (k)]Q)
= —(EP(—k)Q, BV (K)Q) + (7Y (—K)Q, B (k)Q)
= —kdksr,0(0aa’Obpr — daprdarp)

= k6k+k’,0ﬁ“(eab — €ba, Ca'ly — Cba’) -
For d = 3 and d > 5, this shows that we have a representation of central
charge ¢ = m for the affine Kac-Moody algebra s6(d). For d = 4, the
special orthogonal Lie algebra so0(4) is not simple, but isomorphic to so(4) =~
50(3) @ s50(3). If we denote E;; = e;; — €j;, then the two commuting bases of
$0(3) are given by

0 1 0 0 0 01 0 0 0 0
-1.0 0 0 0 00 -1 0 0 1
B=3lo o o 1|PB=2[0 00 o|FB=z2l0 -1 0
0 0 -1 0 0 1.0 0 -1 0 0

and
0 1.0 0 0 0 0 1 0 0 1
4100 0| |0 010, [0 0 o0
Ee=219 00 —1|Fe=2{0 1 0 of/F==2|1 0 o
0 01 0 -1.0 0 0 0 -1 0

This shows that the Killing form x(X,Y) = (d — 2)tr(XY") on so(3) is precisely
(with the right scaling) the restriction of the Killing form on so(4). Thus we
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get a single 50(3) representation of central charge ¢ = & for dim(V) = 3, and
two commuting $0(3) representations of central charge %2 for dim(V') = 4.

Since E% (k)T = —E%(—k)T, the operators cos(k¢)(eqp—epq) and sin(ke)(eqp—
epe) on Hr are represented by selfadjoint elements, which can be exponen-
tiated. The projective Lie algebra representation of (the Fourier monomials
in) Lie(Q2.0(V)) integrates to a projective group representation of Q.O(V)" =
Q.Spin(V'). Because the generators consist of even elements, the Z/2Z-grading
of F is preserved by these unitaries. Since we already know that the constant
loops O(V') have a canonical lift to U(F), we need only determine what hap-
pens to the noncontractible loop g(¢) = cos(d)(eaa + €pp) + sin(@)(epe — €ap) +
> erap Ccc that generates Q.O(V)/Q:Spin(V) (which is Z for d = 2 and Z/2Z
for d > 2).

In order to do this, we write V,; := span (1%, 1), so that V =V, @ V.3, and
consider F as the super tensor product F(V) = F(V,)®F (V%) accordingly.
Because g acts trivially on Moe Qg VaJl;, we need not worry about the second
part. We introduce (for all n € Z + 3) the vectors wy (n) := ¢%(n) £i*(n), on
which g acts by ¢ - w4 (n) = wx(n +1). Multiplication by g is supposed to shift
the energy of each individual fermion by +1. We note that w(n)* = wx(—n),
and that {wy(—n),w_(—m); n,m > 0} is a C-basis of V{**. We therefore have
a basis

w_(=ng)...w_(—n1)wy(—my) ... wiy(—mq) Q

of F(Vgp), where ng, > ... >n3 >0and m; > ... >mq > 0.

Any quantisation U of g must satisfy Uw, (n)UT = wy(n+1) foralln € Z+3
(which implies Uw_(n)UT = w_(n — 1)), so that its action on basis elements is
prescribed by the value of U,

Uw_(—ng)...w_(—n1)wi(—my) ... wi(—m1)Q =
w_(—ng—1)...w_(—n1 — Dwi(—my +1)...wi(—m1 + 1) UQ.

Since Uw4(n)Q = 0 for n > 0 implies w_(—k)*UQ = 0 for k¥ > 1, and sim-
ilarly Uw_(n)Q2 = 0 for n > 0 implies both wy(—k)*UQ = 0 for £ > 0 and
w_(—3)UQ = 0, we must have that U2 is a unimodular multiple of w_(—3)Q.
One checks that the unitary operator defined like this, corresponding to a shift
by one in the zero point energy, is well defined and respects the commutation
relations. Since it either decreases (if the original state contains a wy(—3)-
excitation) or increases (if it does not) the number of fermions, this operator
reverses the Z/27 grading of F. O

Remark 5. This is the same as in the finite dimensional case: the projective
action of O(V) on a Cliff(V)-module is given by even operators for O(V)? =
SO(V), namely the exponentials of E;; — Ej; = ¥;10; — ¥;4;, and by the odd
operators 1; for reflections.
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4 Defects and Sectors

For g € PO(V), we define the Fer(V)-Fer(V) defect Dy. (For the definition of
a defect, see [BDH09].) If E — M is a bundle of real inner product spaces with
fibre V and connection V, than for any loop L : S* — M, the pull back L*E —
S is isomorphic to either the trivial bundle or to Moe ®g V. In the latter case,
the connection V yields an orthogonal isomorphism I'z,(L*E) — I'r,(Moe ®gr
V'), which respects the smooth structure precisely when the holonomy is —1.
The idea is roughly to define a defect as the conformal net arising in this way,
but described in terms of Moe only.

4.1 Definition of defects

First of all, note that for g € PO(V), the action of g on L?(Moe""®) is local.
We consider L2(Moe""®) = L2(Moe""C|;) @ L2(Moe""C|}¢) in the obvious fash-
ion (I¢:= S —I), and split CAR(S') = CAR(I)®CAR(I¢) accordingly as a
super tensorproduct of graded C* algebras. Then by locality, g induces auto-
morphisms of CAR(I) and CAR(I¢) separately, and oy (a®b) = o] (a)®a§c ().

We show that if g is continuous on the interior points of I C R, then the au-
tomorphism a4 on CAR(T) is weakly continuous, and induces an automorphism
of A(I).

Find a piecewise C* loop § € QO(V)° such that g|; = g|;. The automor-
phisms o, and a; agree on CAR(I) because their actions on L?(Moe""%|;) agree.
The automorphism «j lifts to a (projective) unitary on F, that is to say, there
exists a unitary U so that az(A) = UgAUg_l. It is possible to choose Uz € A(J)
for all J DD I, but usually one cannot have U € A(I).

Another choice §' = §d with |7 = 1 yields a different unitary but the same
automorphism: UsaUjy 1 — 4. The Lie algebra generators for Us can be written
explicitly in terms of even elements of CAR(I¢), so that Us € A(I¢) graded
commutes (and therefore, due to evenness, commutes) with a € A(I).

This yields a weakly continuous automorphism ¢, on the v.N-algebra A(I),
considered as a weakly closed subalgebra of A(J) for some J DD I. It extends
the automorphism of CAR(I) which we already had, and the fact that CAR(I)
is (weakly) dense in A([) is another way to see that o, does not depend on the
choice of §. As noted before, the automorphism «, € Aut(CAR(I)) does not
lift to a weakly continuous automorphism of A(I) if g has a discontinuity in the
interior of I.

Definition 2. Let g € PO(V) such that g is 1 on a neighbourhood of the lower
semicircle S*. We define the Fer(V)-Fer(V) defect D, as follows:

- On all intervals (bicoloured or not), Dy(I) := A(I).

- If I and J are both either 1- or bicoloured, then D, (j) := A(j). If j: I —
J maps a 1-coloured into a bicoloured interval, then Dgy(j) == ag4 o A(j).
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- Part of the structure of a Fer(V)-Fer(V') defect is a natural isomorphism
between Dy restricted to the white (or black) intervals and the net Fer(V).
This is just the identity.

Remark 6. Note that a4 is well defined on the image of A(I) in A(J): the
2-coloured interval J comes with a local parameterisation ¢ : R — J such that
c(R=9) is contained in the white and ¢(R<Y) in the black part of J. By writing
J =1i0jo, where jo : I — Im(y) is just j with a restricted target and i : Im(j) — j
is the inclusion, we can assume without loss of generality that j is an inclusion.
Say I is white (the black case is proven analogously). Write I as the union of
In:=1Nc¢(R)and I := I — I Nc(R<q). On I, the map ¢! composed with
stereographic projection p : R — S realises Iy as a the right semicircle S}!.
Extend poc~?! (in any way) to a diffeomorphism ¢t : I — S* — Sllﬂ_. Then the
map A — A(c) o ay o A(c) "1 (A) is the identity on A(I}), because g|g1 = 1. As
A(I) is generated by A(ly) and A(I;) by local additivity, the result does not
depend on the way in which the parametrisation has been extended.

Remark 7. Note that this is a continuous functor Int — vNalg. Even if
Un In = I and the ‘changing point’ is in 01, then the restriction of ay : A(I) —
A(I) to A(1) is precisely oy : A(L,) = A(Iy).

Proposition 14. The precosheaf D, defined above is in fact a defect.

We only look at the vacuum axiom (all the other ones are immediate). First,
we follow [DH12], and define A(a)§ = Dy(a)¢, which is a left action of A(I) on
L*(A(SY)) ~ F. Note that L?(A(S})) ~ F as an A(SL)-bimodule, where F
is equipped with the left action a - £ = a§ and commuting right action £ - a =
JatJé = k7 IA(F)a'k P A(F)¢ (we used the explicit formula for the modular
operators). Therefore, we simply have A(a)§ = a€.

Again following [DH12], we introduce the left action of A(S) on L?(A(SL)) ~
F given by p(b)¢ := (—1)IllEl¢. D, (F)(b). If we unravel the definitions, then we
see that Dy(F) = A(F) (both semicircles are bicoloured), and since Fg(e'?) =
g(e~®) is antilinear and orientation reversing, A(F)(b) = A(F)(#:b)A(F) is —
hopefully — the appropriate linear *-homomorphism A(S*) — A(Si)op. The
left action p of A(SL) on F ~ L?(S7) thus takes the shape

pb)E = (=Pl A(F)(b)
(=1)"Ele - A(F)#:bA(F)
(=PI A (F) (A (F) b A (F) s~ A(F)E
(=)= bt
— b,

(We used k tA(F) = A(F)rk, A(F)? = 1, and in the last line we checked case
by case what happens if b and £ are odd or even.)

For the trivial defect, the transition functions A(J) — A(SL) and A(J') —
A(SL) are just the embeddings, and the action A\®p : A(J)RA(J') — B(F)
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of the Z/27Z-graded tensorproduct is simply A@p(a®b)¢ = abé. This obviously
extends to A(J U J').

If the defect is given by a path g, then the inclusions A(J) — A(S}) and
A(J') — A(SL) are twisted by ag, so that A&p(a®b)é = a,(a)a,(b)€. Since g
does not not have a discontinuity in the interior of J NJ’ = S}, ag extends to
an isomorphism of A(JN.J’), and we can write o, (a)ay(b) = ag(ab). Thus A&p
extends to the twisted action ay of A(S}) on F. O

Remark 8. I cheated a bit here, because I really should have shown that
the whole procedure in [DH12] for turning the orientation reversing diffeo-
morphism e’® — e~ into pin diffeomorphism and then into a morphism
A(SL) — A(Si)op does indeed yield b — A(F')(#:b)A(F). So the proof that
the defect is in fact a defect is slightly defect. However, the fact that D, fulfills
the vacuum axiom if and only if Fer(V') does is independent of the precise form
of A(z — Z), so the definition of defect is correct also if the above proof is not.

If A is a conformal net and f : I — J is an antilinear orientation reversing pin
morphism, then A(f) : A(I) — A(J)°" is a morphism (linear or antilinear) of
Z/2-graded von Neumann algebras. This is not an antilinear antihomomorphism
A(I) — A(J) of von Neumann algebras because we defined a o, b = (—1)lallblp.
a and (a)P~* = (=1)l*la*. However, a ~ il%A(f)(a) is an antilinear anti-
homomorphism. For Fer(V), it is given by a — A(f)atA(f~1).

Definition 3. For the free fermionic net, an antilinear orientation reversing gm
morphism f : I — J gives rise to the linear homomorphism A(I) — A(J) = :
A A(f)#:(A)A(f~Y) (with A(f) the Virasoro operators) and to the antilinear
anti-homomorphism A(I) — A(J) : A A(f)ATA(f71).

We'll work with the antilinear anti-involutions as much as possible and re-
strict the use of #; to the bare minimum.

We have defined a separate defect D, for each g € PO(V), but it turns out
that up to isomorphism, D, depends only on the class of g in QO(V)\PO(V') ~
AO(V)\O(V) x O(V). The element of AO(V)\O(V') x O(V) corresponding to
g is of course just [t(g), s(g)].

Proposition 15. If g,h € PO(V), then defects Dy and Dy, are isomorphic if
and only if hg=! € QO(V). Le., there exists an invertible natural transformation
N : Dy — Dy that restricts to the identity on the black and on the white
intervals. (This is not an isomorphism in the 3-category of conformal nets!)

Proof. Let I be a 1-coloured and J a bigger 2-coloured interval, so that the
inclusion I — J induces the twist by g on Dy, i.e. ag : Ag(I) — Ag(J) and
similarly the twist by h on Dy, ap : Ap(I) < Ap(J). (Recall that Dy (I) is
simply A(I). We write subscripts to remember which inclusions to use in the
precosheaf structure.)

If Dy and D), are isomorphic, then there exists an invertible, continuous
natural transformation between them. That is, there must exist for each interval
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I (be it coloured or not) a von Neumann-algebra isomorphism N(I) : A4(I) —
Ap(I) which is compatible with inclusions and limits of intervals.

Since the natural isomorphism between Fer(V') and the restriction to black
(or white) intervals of D, is part of the data for the defect, we require N :
Dy — Dy, to respect it. This means that for black (or white) intervals I, the
isomorphism N(I) : Dy(I) — Dp(I) is the identity under the natural isomor-
phisms Dy(I) ~ A(I) and Dy (I) ~ A(I), which, according to the definition of
our defect, are just the equalities Dy(I) = A(I) and Dy (I) = A(I). In plain
english: N(I) is the identity if I is either black or white.

We exploit the compatibility with inclusions. Let J be a bicoloured interval,
and let Jp and Jy be the black and white parts of J. (Both 1-coloured, of
course.) The commuting diagram

Dy(Jw) = ()
.| N
D,y N Dy

N(Jp)=Id
Dy(Jp) 2= D, (Jp)

shows that N(J) = ap o a,' = apg-1 on the image of Dy(Jp) and on the
image of D,(Jw ). By additivity, the images of D,(Jg) and of D4(Jy ) generate
Dgy(J), so that the isomorphism (of von Neumann algebras!) N(J) is, under
the identification D,y (J) ~ A(J) =~ Dp(J), a weakly continuous extension of the
automorphism ay,,-1 : CAR(J) — CAR(J). According to proposition 12, this
implies that gh~! does not have discontinuities in the interior of J, and because
J is arbitrary that gh=! € QO(V).

It is not hard to check that N (/) = Id for I black or white and N(.J) = aj4-1
for bicoloured J is indeed an isomorphism Dy — D, O

Another definition of defects, equivalent up to isomorphism, is the following
one, which uses the holonomy of a connection rather than a constant section.
An element G € O(V) can be considered as a constant loop, and therefore lifts
to an element Ug € U(F). This yields a spin representation on F, and thus
a homomorphism O(V) — Aut(A(S")) given by ag(a) = UgaUg". This gives
rise to a defect Dg.

Definition 4. Let G € O(V). The Fer(V) — Fer(V') defect D¢ is defined as
follows:

- On all intervals, coloured or not, Dg(I) := A(I).

- If I and J are both white, both black, or if I is black and J is bicoloured,
and if j : I — J, then Dy(j) = A(j). If I is white and J bicoloured, then
D¢ (j) = ag o A(j)-
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- The natural transformation between Dg restricted to the black or white
intervals and A is the identity.

Proposition 16. Let G € O(V) and g € PO(V) with g|s1 = 1. Then the
defects Dg and Dy are isomorphic if and only if G = gi_lgf.

Proof. Left multiplication with (grg;)~! (for notation, see below) does not
alter the isomorphism class of Dy, so we may assume that gs: = 1 as well as
gst = 1. Suppose that gy = G. Then the function h : S — O(V) defined
by h(z) = g(z) for R(2) < 0 and h(z) = G lg(z) for R(z) > 0 is continuous
in ¢, but discontinuous in —¢. The natural transformation Dg — D, is then
given by N(I) = Id on black and white intervals, If .J is bicoloured and J C S*
with ¢ € J the ‘turning point’, —i ¢ J, and the white and black parts are
Jw = JnS;, Jg = JN Sk, then N(J)(4) = ap(A). This is well defined
because h is continuous on J. If J only has a parameterised collar, then N(J)
is defined as in remark 6, with the difference that the right part A, maps to
ac(Ay) (which is globally defined) rather than A,. This shows that D¢ is
isomorphic to D, if g; = 1 and gy = G, and by the previous proposition not to
any D, with qi_qu #G. O

4.2 Definition of sectors

For the definition of a sector, see [BDH09]. We adapt the definition in the sense
that we require the Hilbert space to be Z/2Z-graded, and the homomorphisms
pr to be homomorphisms of Z/2Z-graded von Neumann algebras. A morphism
of sectors will be a grading-preserving invertible isometry of Hilbert spaces that
intertwines the homomorphisms.

Definition 5. Let g and h be 1 on a neighborhood of S' and have no dis-
continuities outside 1. We define a Dy — D), sector Fgp as follows. Define
h(e'?) = h(e™'?), so that h = 1 on a neighbourhood of S%, and has no discon-
tinuities outside —i.

- Fgn =F as a Hilbert space.

- Ifi eI, then A(I) acts by A : & — a5 (A)E. If —i € I, then by A : § —
ag(A)E, and if £i ¢ I, then by £ — a5 (A)E.

This action is compatible with the precosheaf structure of D, and Dy; If
JCI, *i¢ Jandié€ I, then A€ A(J) acts by § — a 5(A)¢ and its image
ay(A) € A(I) acts by & — az(ag(A))E.

A similar story holds for the inclusion J C I’ with —i € I’, but we have to be
a bit more careful about the inclusion J C I’. We decompose it into reflections
and inclusions in the upper semicircle, J — J — I’ — I’. Remembering that
(hopefully), Dy (z +— %)(A) = A(F)ATA(F), the inclusion J — I’ yields

A A(F) (U AF)ATA(F)U; ) A(F)
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which equals (A(F)U,A(F))A(A(F)U,A(F))T. Now A(F)U,A(F) = Uy. This
can be seen on the level of generators: A(F)yn,A(F) = ¢_,, so as E¥ (k) is a
bilinear expression in the fields, we have A(F)E(n)A(F) = E(—n), and U, =
Uz. (We may choose h to have winding number zero.)

The inclusion J C I’ is thus a twist by &, and the action a7 (A4) of A € A(J)
agrees with the action agy(az(A)) of its image a;-(A) in A(I").

4.2.1 Vertical multiplication of sectors

Any D-E sector Hpg has a natural structure of D(S1)-E(S})-bimodule. The
left action is simply given by D(S}), whereas the commuting right action of
E(S%)is given by X : £ — v 'E(z — z)(X)r€. (Conjugation by r, well defined
on any Z/2Z-graded Hilbert space, is needed because E(z — z)(X) € E(SY)
supercommutes with the left action by X.) For a D-E sector Hpgr and an
E-F sector Hgp, it thus makes sense to consider the D(S1)-F(S1) bimodule
HpE gE(Si) ‘HpE, which is the bimodule induced (by twisting with  on F') by
a D-F sector. For the Dg-Dy, sectors Fy p, we will show that Fy o & 4(s1) Fgn =
Frn as a Dy-Dy, defect.

We calculate the vertical fusion product of Fy 4 by Fy pn, (As before, we write
g for '® — g(e™*®)).) The (left) action of A(S1) on F, is twisted by h, and
because h|n = 1 it is not twisted at all. As a left A(SL)-module, we simply
have F = Fg p.

The right action of A € A(S}) on Fy, is given by the left action of
K 'Dy(z — z)(A)k € K TA(SL)k = A(SL). The left action of A(SL) on
Ff,g is not twisted because the twist f is 1 on S, and the map ST — S}
maps bicoloured to bicoloured intervals, so it does not introduce a twist ei-
ther. The right action of A(SL) on Fy 4 is thus simply left multiplication by
kIA(F)ATA(F)k.

The Connes Fusion Product is the A(S*)-bimodule defined as the completion
of

Frg®agst) Fon = Hom_ 491y (L*(A(S), Frg) @ Fon

in the (degenerate!) norm induced by (z®¢&,y®@n) == ((y'z) 5., &, n). Note that
ylz: L2(A(SY)) — L?(A(S)) is right-A(SL) equivariant, and thus multiplica-
tion by an element of A(S%) by the bicommutant theorem. Note also that since
both L?(A(S1)) and Fy , are Z/2Z-graded Hilbert spaces, the Hom-space, and
hence the CFP, are again graded.

The degeneracy takes care of expected relations like

TRagnlE=T fqaa®&

etc. by forcing (t®@a-¢gpné—x-oa®&yxn) =0 for ally@n.
We use the isomorphism of A(S})-bimodules L?(A(S})) ~ F to see that
the requirement that = be an element of Hom,’A(Si)(LQ(A(Si)),}'f,g) is the

same as requiring x : F — Fr 4 to be an intertwiner of right A(S}r)—modules,
where the right action on F is prescribed by Tomita-Takesaki theory, namely

25



€ JATJE with J = k7 'A(F) = A(F)x the Tomita-Takesaki involution for
A(SL), and the right action on Fy is prescribed by the net axioms, namely
& — kK IA(F)ATA(F)k as explained above. This happens to be the exact same
action!

So z € Hom,,A(Si)(LQ(A(O)),}'fyg) if and only if z(Y¢) = Yz(§) for
Y = k 'A(F)ATA(F)k = JATJ with A € A(S}) arbitrary. Since A — JATJ
is an antilinear anti-isomorphism by modular theory, it is in particular a sur-
jective map A(S%) — A(S1)’. This means that x, considered as an element of
B(F,Fyn) ~ B(F,F), is left multiplication by an element of A(SL)” = A(SL).

Going back to the scalar product, we see that

(z@&yen = ((y'z) gné&n) = (T gn &y gnn)-

In particular, the map 2 ® — -4, &, is an isometry. The left action of A(S%)
on the fusion product is a - (z ® §) = ((a -y,4 ) ® §), and the right action is
(2®&)-b=2® (£ 4nb). Because z is right A(S}) equivariant, these actions
are intertwined by the above isometry.

We check that 2 ® & +this is also a map of A(S})-bimodules. The left
action of @ maps * ® £ to a -7, ¥ ® &, which goes to a ¢, k™ z(£) Because the
A(SL)- bimodule structures of the F,, are all the same, we may as well label
the resulting Hilbert space F p.

Proposition 17. The map ¢ : Ffg®a(s1) Fgn = Frn defined by @& — (&)
is an isomorphism A(SL)-bimodules.

All this could be abbreviated by saying that since the right action of A(Si)
on Fy 4 and the left action on F(g, h) are untwisted, the CFP of L?(A(S})) by
itself is itself again.

We examine the structure of Fy 4 Macsy) Fgn asa Dy — Dy defect.

o If A € A(I) with i ¢ I, then its action is defined as follows. Suppose
that A is a product A = AL AgA_ with Ay € A(S}), A- € kA(SL)r™!
and Ay € A(Iy), where Ij is an interval exp(i(—e, €)) Uexp(i((m —€, m+€)))
on which f, g, g and h are all 1. The action of A} (and Ag) is prescribed
by the Dj-inclusion of I U S% in S% (which twists by fg) and the left
action of Df(S%) on the CFP. The action of A_ is prescribed by the
Dy, inclusion of 7 U S in S! (which twists by h) and the right action
of Dy,(S1) on the CFP, which is made into a left action of Dj(SL) by
composition with Dy(z — Z) and conjugation with x. (We use the left
action of KDy (S )k~ directly, so we do not twist by x.) Then

I@f — A+A0 “f.g TR A_ 'g,hf
= UgA AUz @UpA- U;ﬁlf
= UsA AU 'z @ UpA_UZ'E,
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because U, and Uz commute with the stuff they surround. Thus
YA (z®€) = UsA AU a(UzA-U-'€)
= UpAy AU UR AU a(€)
= UsUpAy AgA_U-U; (€
= UfEAUf_ﬁlgb(x ® £)
because (2nd line) z respects the left k. A(SL)x~1-action and because (3rd
line) [Uy, Ay Ag] =0 and [Uf_l, Uy A_] = 0. In particular, it is clear from
this expression that the action of A is indeed an action, and does not

depend on the way in which A is decomposed into Ay AgA_. A(I) can
thus be thought of as acting on F by A — UthUJThl.

If A e A(I) with ¢ € I, then its action is defined by
T@E ALAgpgr @A gy &= UgAL AUy e @ UpA_U- €.
Thus
dAggr8) = (UgArAgUs a(UpA_U-'€)
= A_;,.AoUﬁA_UE_lqﬁ(af & 5)
= UzAU-'¢(z @ €)

and A can be thought of as having the twisted action £ +— UhAUh*l{ on
F. The twist does nothing in case I C Si.
If A e A(I) with —i € I, then the action of A € A(I) is defined by

A(.’E@g) = A+A() 'fyg"E@A, 'g,hé-
= UjA AU 'z @ AL,

so that (Uy and = commute with A_)
$(A-(z®¢) = UpA AU; w(A¢)
= UsALAA U 'p(z ®¢)

Note that if I C S1, then the twist by f does nothing, and A(I) then has
the trivial action on F. In general, the action of A(I) on F is given by
A UAUS .

Summarising, we see that the Dy-D) module structure of Fy 4 ng(Si) Fon
agrees with that of Fy , for all operators of the form Ay AgA_ with A € A(SL),
Ao € A(Ip) and A_ € A(SL)'. Since all algebras involved are generated by such
elements, the defects must be identical. (We assume that we already know that
the thing is a sector.) We have proven
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Proposition 18. The map ¢ : x ® £ — x(§) is a unitary isomorphism
Frg®p, sty Fan = Frn

of Dy-Dy, sectors.

4.2.2 Horizontal multiplication of defects and sectors

In order to state and prove the next propositions, it is convenient to set and
change a few conventions. If g € PO(V) with g[s1 = 1, then g can be uniquely

written as ¢ = grgr = gryr, where g1, is 1 on the right semicircle Sk := {z €
S'; Re(z) > 0} and gg is 1 on the left semicircle St := {z € S*; Re(z) < 0}.

We now denote the ‘left-right flipped’ element by g(z + iy) := g(—z + iy).
(Before, we used g for the ‘up-down’ flipped element.) The continuous loop
Jrc = Gryr agrees with g on Sk and the continuous loop grc := grg; agrees
with g on Si. According to proposition 15, D, ~ Dy with ¢’ = grtg =
(Gr9r) ‘9Lgr = gglgL nontrivial only on the left semicircle St, and D), ~
Dy, with b/ = hiéh = (hhy) ‘hrhg = EzlhR nontrivial only on the right
semicircle S’}%. The following proposition says that the composition Dy * Dy,
of defects is isomorphic to Dy, and therefore to that given by Dg.;, where
g*h:= (¢ gn =7g;" gRﬁzlhR. Furthermore, this isomorphism extends
to an isomorphism between the sectors Fg 1 * Fp1 and Fyup 1.

Proposition 19. The multiplication of defects is given by Dy * D}, o~ Dgyp,

where g*x h := gglgRﬁzlhR is taken to be 1 on the left semicircle. The identifi-
cation of defects up to isomorphism with elements of O(V') given by D, gi_lgf
s therefore an isomorphism of groups. Furthermore, there exists a unitary iso-
morphism ¢g p  Fg1 &A(Si) Fni — Fgun,1 that intertwines the Dy x Dy, defect
Fg1 % Fn,1 with the Dy, defect Fgup 1.

Proof. We construct a representation of Dy * Dy (J) for a bicoloured interval
J. Let I be the left semicircle I = S} := {e!®; ¢ € [-m/2,—37/2]} and let
I= S}% be its complex conjugate, the right semicircle. We define the bicoloured
intervals [Jw] := Jw U; Sk and [Jg] = S} U; Jp, coloured such that Jy C [Jyw]
is the white part of [Jy] and Jp C [Jp] the black part of [Jg]. (In words,
we attach a black right semicircle to the left, white part of J and we attach
a left, white semicircle to the right, black part of J.) We deviate from the
definition of [BDHO09] in that we do not attach a little ‘buffer interval’ between
the semicircles and the intervals. Thus S} maps to [Jp] by inclusion ¢ and to
[Jw] by s:2z+— —Z.

We choose the faithful representation F, of Dy([Jw]), on which an element
a € Dy([Jw]) ~ A([Jw]) acts by £ +— a&. Likewise Fj, for Dj([Jw]). This
introduces a left action of A(S}) on Fy, by a : € — Dp(1)(a)¢ = ap(a)é and a
commuting right action of A(S}) on F, by a : £ — Dy(z — —%)(kar )¢ =
oy (K~ TA(S)aTA(S)k)E, Kk commutes with the even U,’s, which happens to equal
ag(Ja'J). We may thus think of F, as the D,-Dy sector Fy 1 and of Fj, as the
Dy-Dq sector Fy 1.
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We calculate Fg B 41y Fp. This is by definition the closure of the tensor
product

Hom_ y(s1)(L*(A(SL)), Fy) ® F

w.r.t. the degenerate inner product

(z@&yen) = ((y'z) 1 &n)

where we used the fact that y'z : L2(A(S:)) — L2(A(S})) is right-A(S})’
equivariant and must therefore be leftmultiplication by an element a € A(S}).
This element acts from the left on Fj, by the twisted action £ — ap(a)€, and
this is what we mean by (yfz) -5, .

We identify L?(A(S})) = F as an A(S}) bimodule in the usual way, [a] —
af, so that the left action is a - £ = a¢ and the right action éa = JatJE. The
degeneracy of the tensor product takes care of the relations ra ® { = x ® a - &,
where the right action of a on x is given by za : £ — z(a€). Indeed, we have

<Ia®§ay®n> = ((yTxa) “h 5777> = <(yTx) ‘h (a ‘h 5)777> = <‘T®a h §7y®7]>

forally®@mn € }—g gA(Si) Fh.

We prove that  is an element of Hom,7A(Si)(L2(A(SE)), Fgy) if and only if
aU; ' = @9 € A(S}). (We identify F, ~ F as a Hilbert space but not as an
A(S1) module. By zg € A(S}) we mean the map F — F, : £ — x0&, not the
map € - ay()€.

By right A(S})-invariance, z(JalJ€) = ay(JalJ)z(€) for all a € A(S}),
and therefore z(b§) = ay(b)z(¢) for all b € JA(S})J = kL A(SE)k = A(S})'.
Thus z is a morphism of left-A(S})" modules. Now let Uy g be a lift of the
continuous loop grc that coincides with g on S§. Because U%RA(S}%)U;}% =
A(SE) and kU, g™ = U, g (the Lie algebra generators are even), we have

Ug.RA(SL) Uy = A(S}) for all b e A(S})":
WUy p(b) = (U pbUy,rU; R€)
= U, 1bUg g g x(U, RE)
= ba(Ug gg) -
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