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Randomness helps...

@ Communication complexity
@ Query complexity

o Cryptography
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in all cases?

@ Under believable assumptions, randomness does not increase
computational power

@ It should be true, but how to prove it?
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A glimpse of its hardness

Polynomial identity testing problem

Input: A representation of a polynomial p : F” — F of degree d(n)
Output: Yes iff Vxy, ..., x, € F, p(x1,...,x,) =0

@ Simple randomized algorithm

» Pick xq, ..., x, uniformly at random from a finite set S C F
» If p#£0, Prip(x,....,xn) = 0] < %

@ How to find such “witness” deterministically?
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MA vs. NP
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MA vs. NP

Problem L € NP

r — — 0/1
y_ —

for x € Lyes,

Ely D(va) =1
for x € Lpo,

Vy D(x,y) =0
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MA vs. NP

Problem L € NP Problem L € MA
T — — 0/1 T — — 0/1
D / R /
Y — — Y — —
for x € Lyes. for x € Lyes;
Jy D(x,y) =1 Jy PrR(x,y)=1] > 2
for x S Lno, for x S Lno|
Vy D(x,y) =0 Vy Pr[R(x,y) = 0] > 3
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MA vs. NP

Problem L € NP Problem L € MA
T — — 0/1 T — — 0/1
D / R /
Y — — ¥ — —
for x € Lyes. for x € Lyes;
for x S Lno, for x S Lno|
Yy D(x,y) =0 Vy Pr[R(x,y) =0] > %

Derandomization conjecture

MA = NP J
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Hamiltonian complexity

@ Physical systems are described by Hamiltonians
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Hamiltonian complexity

Physical systems are described by Hamiltonians
Find configurations that minimize energy of a system
Groundstates of Hamiltonians

Interactions are local
Look this problem through lens of TCS

Local Hamiltonian problem (k-LH, 3)

Input: Local Hamiltonians Hj, ... Hp,, each acting on k out of a n-qubit
system; H =), H;

yes-instance: (¢| H |¢)) < aom for some [¢))

no-instance: (| H [¢) > Sm for all |¢)
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Hamiltonian complexity

Physical systems are described by Hamiltonians
Find configurations that minimize energy of a system
Groundstates of Hamiltonians

Interactions are local
Look this problem through lens of TCS

Local Hamiltonian problem (k-LH, 3)

Input: Local Hamiltonians Hj, ... Hp,, each acting on k out of a n-qubit
system; H =), H;

yes-instance: (¢| H |¢)) < aom for some [¢))

no-instance: (| H [¢) > Sm for all |¢)

How hard is this problem?
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Restrictions on the Hamiltonians

@ Local Hamiltonian H = }_; H; is called stoquastic if the off-diagonal
elements of each H; are non-positive
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Restrictions on the Hamiltonians

@ Local Hamiltonian H = }_; H; is called stoquastic if the off-diagonal
elements of each H; are non-positive

This definition is basis dependent.
@ Projector P; onto the groundspace of H;

> P = Zj |¢i7j><¢ivj|
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@ Projector P; onto the groundspace of H;
> Pi=3 100l
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Restrictions on the Hamiltonians

Local Hamiltonian H = }_; H; is called stoquastic if the off-diagonal
elements of each H; are non-positive

This definition is basis dependent.
@ Projector P; onto the groundspace of H;
> Pi=3 100l
> (9ijl dijr) =0, for j # '
> |;,) have real non-negative amplitudes.
Groundstate [1)) = > ax|x), ax € RT

In this work: |¢; ;) = | Ti,), where T;; C {0,1}*
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Stoquastic Hamiltonian problem

Uniform stoquastic local Hamiltonian problem

Input: Uniform stoquastic local Hamiltonians Hy, ... H,, each acting on k
out of a n-qubit system; H =", H;

yes-instance: (¢| H|y) =0

no-instance: (| H [¢) > Sm for all |¢)
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yes-instance: (¢| H|y) =0
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Stoquastic Hamiltonian problem

Uniform stoquastic local Hamiltonian problem

Input: Uniform stoquastic local Hamiltonians Hy, ... H,, each acting on k
out of a n-qubit system; H =", H;

yes-instance: (¢| H|y) =0

no-instance: (| H [¢) > Sm for all |¢)

o for some = —~—, it is MA-complete (Bravyi-Terhal 08
poly(n)

@ Our work: if £ is constant, it is in NP
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Outline

@ Connection between Hamiltonian complexity and derandomization
© MA and stoquastic Hamiltonians
© Proof sketch

@ Open problems
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Back to NP vs. MA

Theorem (BT '08)

Deciding if Unif. Stoq. LH is frustration-free or inverse polynomial
frustrated is MA-complete.

Theorem (This work)

Deciding if Unif. Stoq. LH is frustration-free or constant frustrated is
NP-complete.
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Corollary
Suppose a deterministic polynomial-time map ¢(H) = H' such that
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Corollary
Suppose a deterministic polynomial-time map ¢(H) = H' such that
© H' is a uniform stoquastic Hamiltonian with constant locality and
degree;
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Back to NP vs. MA

Corollary
Suppose a deterministic polynomial-time map ¢(H) = H' such that

© H' is a uniform stoquastic Hamiltonian with constant locality and
degree;

@ if H is frustration-free, H' is frustration free;

@ if H is at least inverse polynomial frustrated, then H' is constantly
frustrated.

Then MA = NP.
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Why should a map like this exist?

@ PCP theorem: such a map exists for classical Hamiltonians

Hamiltonian complexity meets derandomization 12 / 22



Why should a map like this exist?

@ PCP theorem: such a map exists for classical Hamiltonians

@ Quantum PCP conjecture: such a map exists for general Hamiltonians

Hamiltonian complexity meets derandomization 12 /22



Why should a map like this exist?

@ PCP theorem: such a map exists for classical Hamiltonians

@ Quantum PCP conjecture: such a map exists for general Hamiltonians

Corollary
Stoquastic PCP is equivalent to derandomization of MA J

Hamiltonian complexity meets derandomization 12 /22



Why should a map like this exist?

@ PCP theorem: such a map exists for classical Hamiltonians

@ Quantum PCP conjecture: such a map exists for general Hamiltonians

Corollary
Stoquastic PCP is equivalent to derandomization of MA J

Hamiltonian complexity meets derandomization 12 /22



Why should a map like this exist?

@ PCP theorem: such a map exists for classical Hamiltonians

@ Quantum PCP conjecture: such a map exists for general Hamiltonians

Corollary
Stoquastic PCP is equivalent to derandomization of MA J

advance on MA vs. NP

Hamiltonian complexity meets derandomization 12 /22



Why should a map like this exist?

@ PCP theorem: such a map exists for classical Hamiltonians

@ Quantum PCP conjecture: such a map exists for general Hamiltonians

Corollary
Stoquastic PCP is equivalent to derandomization of MA J

quantum PCPs are hard

advance on MA vs. NP
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Stoquastic Hamiltonians in MA (BT '08)
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Stoquastic Hamiltonians in MA (BT '08)

e (Implicit) Graph G(V,E)
> V={0,1}"
» {x,y} € Eiff Ji (x| P;ly) >0

Example
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Stoquastic Hamiltonians in MA (BT '08)

e (Implicit) Graph G(V,E)
> V={0,1}"
» {x,y} € Eiff Ji (x| P;ly) >0

Example

@ 3-qubit system
Pry = Py = [WH(WH|+ |[o+) (@] [®F)(OF| = J5(100) +[11))
P13 = [00)(00] 4 [01)(01] + [10)(10]  |W*)(W*| = Z5(|01) + [10))
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Stoquastic Hamiltonians in MA (BT '08)

o (Implicit) Graph G(V,E)
» V={01}"
» {x,y} € Eiff Ji (x| P;ly) >0

Example
@ 3-qubit system

Prp =Py = [WH(WH| + |[o+) (@] [®F)(e*| = J5(]00) +[11))
P13 = [00)(00] + [01)¢01] + [10)¢10]  [W*)(W*| = J5(l01) +[10)

@‘@ @‘®

Hamiltonian complexity meets derandomization
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Stoquastic Hamiltonians in MA (BT '08)

e (Implicit) Graph G(V,E) e Bad string x
» V={0,1}" » Ji such that (x| P;|x) =0
» {x,y} € Eiff Ji (x| P;ly) >0
Example

@ 3-qubit system
Prp =Py = [WH(WH| + |[o+) (@] [®F)(e*| = J5(]00) +[11))
P13 = [00)(00] + [01)(01] + [10)(10]  |W*)(W*| = Z5(|01) + [10))
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e (Implicit) Graph G(V,E) e Bad string x
» V={0,1}" » Ji such that (x| P;|x) =0
» {x,y} € Eiff Ji (x| P;ly) >0
Example

@ 3-qubit system
Prp =Py = [WH(WH| + |[o+) (@] [®F)(e*| = J5(]00) +[11))
P13 = [00)(00] 4 [01)(01] + [10)(10]  [W*){W*| = Z5(|01) + [10))
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Stoquastic Hamiltonians in MA (BT '08)

o MA-verification:
@ Given a initial string xo
@ Perform a random walk for poly(n) steps.
@ If a bad string is encountered, reject.

Example
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Stoquastic Hamiltonians in MA (BT '08)

@ MA-verification:
@ Given a initial string xg
@ Perform a random walk for poly(n) steps.
© If a bad string is encountered, reject.

Example

) e @) @
@0‘@ @0‘@

000
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Stoquastic Hamiltonians in MA (BT '08)

@ MA-verification:
@ Given a initial string xg
@ Perform a random walk for poly(n) steps.
© If a bad string is encountered, reject.

Example

@ O @O @
CRATNCAS

000 22
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Stoquastic Hamiltonians in MA (BT '08)

o MA-verification:

@ Given a initial string xg

@ Perform a random walk for poly(n) steps.
© If a bad string is encountered, reject.

Example

[ ]

000 222, 000 222

Q. @
@"@
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Stoquastic Hamiltonians in MA (BT '08)

o MA-verification:

@ Given a initial string xg
@ Perform a random walk for poly(n) steps.
© If a bad string is encountered, reject.

Example

) e @) @
@0‘@ @0‘@

000 222, 000 222 110
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Stoquastic Hamiltonians in MA (BT '08)

@ MA-verification:
@ Given a initial string xg
@ Perform a random walk for poly(n) steps.
© If a bad string is encountered, reject.

Example

20 Q.8
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Stoquastic Hamiltonians in MA (BT '08)

@ MA-verification:
@ Given a initial string xg
@ Perform a random walk for poly(n) steps.
© If a bad string is encountered, reject.

Example

) e @) @
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Stoquastic Hamiltonians in MA (BT '08)

@ MA-verification:
@ Given a initial string xg
@ Perform a random walk for poly(n) steps.
© If a bad string is encountered, reject.

Example

@ O @O @
CRATNCAS

000 222, 000 222 110 222 110 22

Hamiltonian complexity meets derandomization
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Stoquastic Hamiltonians in MA (BT '08)

@ MA-verification:
@ Given a initial string xg
@ Perform a random walk for poly(n) steps.
© If a bad string is encountered, reject.

Example

) e @) @
@0‘@ @0‘@

110 — 110 — 101

Hamiltonian complexity meets derandomization
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Stoquastic Hamiltonians in MA (BT '08)

@ MA-verification:
@ Given a initial string xg
@ Perform a random walk for poly(n) steps.
© If a bad string is encountered, reject.

Example

) e @) @
@0‘@ @0‘@

110 — 110 — 101
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Stoquastic Hamiltonians in MA (BT '08)

Theorem

If H is FF and xy is in some groundstate of H, then the verifier never
reaches a bad string.

If H is 1/poly(n) frustrated, then the random-walk rejects with constant
probability.

Hamiltonian complexity meets derandomization
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Very frustrated case

Theorem

If H is em frustrated for some constant €, then from every initial string
there is a constant-size path that leads to a bad string.
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Proof.
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Very frustrated case

Theorem

If H is em frustrated for some constant €, then from every initial string
there is a constant-size path that leads to a bad string.

Corollary
Gapped Uniform Stoquastic LH problem is in NP.

Proof.
Check if any of the constant-size paths reaches a bad string.
@ For yes-instances, this is never the case (BT’ 08).

e For no-instances, this is always the case (previous theorem).
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Structure of the proof

© There is a constant-depth “circuit” of non-overlapping projectors
that achieves state with a bad string

@ Construct circuit layer by layer: either there is a bad string, or we can
add a new layer that brings us closer to a bad string

@ From the constant-depth circuit, we can use a lightcone-argument to
retrieve a constant-size path.
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States with a bad string

|S1) = |x1) 1 string
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States with a bad string

| |S2) | (1+ %)2257'; strings

| [S1) = x1) | 1 string
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States with a bad string

| |S3) | (1+ %)32573‘ strings
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States with a bad string

|Ss5)

|Sa)

[S3)

|S2)

| IS1) = ba)

Finding a bad string

Pick L = 2m,
S1) = 1)

1+ %)52% strings
1+ %)4257'; strings
(1+ %)3257’3 strings
1+ %)2257'; strings

1 string

the frustration is at least % there is a constant T such that
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States with a bad string

|Ss5)

|Sa)

[S3)

|S2)

| IS1) = ba)

Finding a bad string

Pick L= £,

|ST) = |+)®" = there is a bad string in |ST).

1+ %)52% strings
1+ %)4257'; strings
(1+ %)3257’3 strings
1+ %)2257'; strings

1 string

the frustration is at least % there is a constant T such that

Hamiltonian complexity meets derandomization
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From shallow non-overlapping transitions to short paths

Lemma

If a bad string is reached after a constant number of non-overlapping
projections, then there is a constant-size path to a bad string.
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From shallow non-overlapping transitions to short paths

Lemma

If a bad string is reached after a constant number of non-overlapping
projections, then there is a constant-size path to a bad string.
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Related results

@ Relax frustration-free assumption to negligible frustration.

e Commuting frustration-free stoquastic Hamiltonian is in NP (for any
gap)

@ “Classical” definition of the problem
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Open problems

e Prove/disprove Stoquastic PCP conjecture

@ Non-uniform case
» There are highly frustrated Hamiltonians with no bad strings
» Frustration comes from incompatibility of amplitudes
V1I—¢|0) +E1) vs. V2|0) ++/1—€]1)
» Add more tests
BT has a consistency test, but not clear that it is “local”

@ Connections to Hodge theory
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Thank you for your attention!
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