Hamiltonian complexity meets derandomization

Alex Bredariol Grilo

joint work with Dorit Aharonov

Randomness helps...

- Communication complexity
- Query complexity
- Cryptography

- Under believable assumptions, randomness does not increase computational power
- It should be true, but how to prove it?

A glimpse of its hardness

Polynomial identity testing problem

Input: A representation of a polynomial $p : \mathbb{F}^n \to \mathbb{F}$ of degree d(n)**Output:** Yes iff $\forall x_1, ..., x_n \in \mathbb{F}, p(x_1, ..., x_n) = 0$

- Simple randomized algorithm
 - Pick $x_1, ..., x_n$ uniformly at random from a finite set $S \subseteq \mathbb{F}$

• If
$$p \neq 0$$
, $Pr[p(x_1, ..., x_n) = 0] \leq \frac{d}{|S|}$

• How to find such "witness" deterministically?

Problem $L \in NP$

$$\begin{array}{c} x \\ y \end{array} D D D D$$

$$\begin{aligned} & \text{for } x \in L_{yes}, \\ & \exists y \ D(x,y) = 1 \\ & \text{for } x \in L_{no}, \\ & \forall y \ D(x,y) = 0 \end{aligned}$$

$$\begin{array}{ll} \text{for } x \in L_{yes}, & \text{for } x \in L_{yes}, \\ \exists y \ D(x,y) = 1 & \exists y \ Pr[R(x,y) = 1] \geq \frac{2}{3} \\ \text{for } x \in L_{no}, & \text{for } x \in L_{no}, \\ \forall y \ D(x,y) = 0 & \forall y \ Pr[R(x,y) = 0] \geq \frac{2}{3} \end{array}$$

$$\begin{array}{ll} \text{for } x \in L_{yes}, & \text{for } x \in L_{yes}, \\ \exists y \ D(x,y) = 1 & \exists y \ Pr[R(x,y) = 1] = 1 \\ \text{for } x \in L_{no}, & \text{for } x \in L_{no}, \\ \forall y \ D(x,y) = 0 & \forall y \ Pr[R(x,y) = 0] \geq \frac{2}{3} \end{array}$$

$$\begin{array}{ll} \text{for } x \in L_{\text{yes}}, & \text{for } x \in L_{\text{yes}}, \\ \exists y \ D(x,y) = 1 & \exists y \ Pr[R(x,y) = 1] = 1 \\ \text{for } x \in L_{no}, & \text{for } x \in L_{no}, \\ \forall y \ D(x,y) = 0 & \forall y \ Pr[R(x,y) = 0] \geq \frac{2}{3} \end{array}$$

Derandomization conjecture

$$MA = NP$$

• Physical systems are described by Hamiltonians

- Physical systems are described by Hamiltonians
- Find configurations that minimize energy of a system Groundstates of Hamiltonians

- Physical systems are described by Hamiltonians
- Find configurations that minimize energy of a system Groundstates of Hamiltonians
- Interactions are local

- Physical systems are described by Hamiltonians
- Find configurations that minimize energy of a system Groundstates of Hamiltonians
- Interactions are local
- Look this problem through lens of TCS

- Physical systems are described by Hamiltonians
- Find configurations that minimize energy of a system Groundstates of Hamiltonians
- Interactions are local
- Look this problem through lens of TCS

Local Hamiltonian problem $(k-LH_{\alpha,\beta})$

Input: Local Hamiltonians H_1 , ... H_m , each acting on k out of a n-qubit system; $H = \sum_i H_i$ yes-instance: $\langle \psi | H | \psi \rangle \leq \alpha m$ for some $| \psi \rangle$ no-instance: $\langle \psi | H | \psi \rangle \geq \beta m$ for all $| \psi \rangle$

- Physical systems are described by Hamiltonians
- Find configurations that minimize energy of a system Groundstates of Hamiltonians
- Interactions are local
- Look this problem through lens of TCS

Local Hamiltonian problem $(k-LH_{\alpha,\beta})$

Input: Local Hamiltonians H_1 , ... H_m , each acting on k out of a n-qubit system; $H = \sum_i H_i$ yes-instance: $\langle \psi | H | \psi \rangle \leq \alpha m$ for some $| \psi \rangle$ no-instance: $\langle \psi | H | \psi \rangle \geq \beta m$ for all $| \psi \rangle$

How hard is this problem?

• Local Hamiltonian $H = \sum_{i} H_{i}$ is called stoquastic if the off-diagonal elements of each H_{i} are non-positive

• Local Hamiltonian $H = \sum_{i} H_{i}$ is called stoquastic if the off-diagonal elements of each H_{i} are non-positive This definition is basis dependent.

- Local Hamiltonian $H = \sum_{i} H_{i}$ is called stoquastic if the off-diagonal elements of each H_{i} are non-positive This definition is basis dependent.
- Projector P_i onto the groundspace of H_i

• Local Hamiltonian $H = \sum_{i} H_i$ is called stoquastic if the off-diagonal elements of each H_i are non-positive

This definition is basis dependent.

• Projector P_i onto the groundspace of H_i

•
$$P_i = \sum_j |\phi_{i,j}\rangle \langle \phi_{i,j}|$$

• Local Hamiltonian $H = \sum_{i} H_i$ is called stoquastic if the off-diagonal elements of each H_i are non-positive

This definition is basis dependent.

• Projector P_i onto the groundspace of H_i

$$P_i = \sum_j |\phi_{i,j}\rangle \langle \phi_{i,j}|$$

•
$$\langle \phi_{i,j} | \phi_{i,j'} \rangle = 0$$
, for $j \neq j'$

• Local Hamiltonian $H = \sum_{i} H_{i}$ is called stoquastic if the off-diagonal elements of each H_{i} are non-positive

This definition is basis dependent.

• Projector P_i onto the groundspace of H_i

$$\bullet P_i = \sum_j |\phi_{i,j}\rangle \langle \phi_{i,j}|$$

•
$$\langle \phi_{i,j} | \phi_{i,j'} \rangle = 0$$
, for $j \neq j$

• $|\phi_{i,j}\rangle$ have real non-negative amplitudes.

• Local Hamiltonian $H = \sum_{i} H_{i}$ is called stoquastic if the off-diagonal elements of each H_{i} are non-positive

This definition is basis dependent.

• Projector P_i onto the groundspace of H_i

•
$$P_i = \sum_j |\phi_{i,j}\rangle \langle \phi_{i,j}|$$

•
$$\langle \phi_{i,j} | \phi_{i,j'} \rangle = 0$$
, for $j \neq j'$

- $|\phi_{i,j}\rangle$ have real non-negative amplitudes.
- Groundstate $|\psi\rangle = \sum_{x} \alpha_{x} |x\rangle$, $\alpha_{x} \in \mathbb{R}^{+}$

• Local Hamiltonian $H = \sum_{i} H_{i}$ is called stoquastic if the off-diagonal elements of each H_{i} are non-positive

This definition is basis dependent.

• Projector P_i onto the groundspace of H_i

$$P_i = \sum_j |\phi_{i,j}\rangle \langle \phi_{i,j}|$$

•
$$\langle \phi_{i,j} | \phi_{i,j'} \rangle = 0$$
, for $j \neq j'$

- $|\phi_{i,j}\rangle$ have real non-negative amplitudes.
- Groundstate $|\psi\rangle = \sum_{x} \alpha_{x} |x\rangle$, $\alpha_{x} \in \mathbb{R}^{+}$
- In this work: $|\phi_{i,j}
 angle = |\mathcal{T}_{i,j}
 angle$, where $\mathcal{T}_{i,j} \subseteq \{0,1\}^k$

Stoquastic Hamiltonian problem

Uniform stoquastic local Hamiltonian problem

Input: Uniform stoquastic local Hamiltonians H_1 , ... H_m , each acting on k out of a *n*-qubit system; $H = \sum_i H_i$ yes-instance: $\langle \psi | H | \psi \rangle = 0$ no-instance: $\langle \psi | H | \psi \rangle \ge \beta m$ for all $|\psi \rangle$

Stoquastic Hamiltonian problem

Uniform stoquastic local Hamiltonian problem

Input: Uniform stoquastic local Hamiltonians H_1 , ... H_m , each acting on k out of a *n*-qubit system; $H = \sum_i H_i$ yes-instance: $\langle \psi | H | \psi \rangle = 0$ no-instance: $\langle \psi | H | \psi \rangle \ge \beta m$ for all $|\psi \rangle$

• for some $\beta = \frac{1}{poly(n)}$, it is MA-complete (Bravyi-Terhal '08)

Stoquastic Hamiltonian problem

Uniform stoquastic local Hamiltonian problem

Input: Uniform stoquastic local Hamiltonians H_1 , ... H_m , each acting on k out of a *n*-qubit system; $H = \sum_i H_i$ yes-instance: $\langle \psi | H | \psi \rangle = 0$ no-instance: $\langle \psi | H | \psi \rangle \ge \beta m$ for all $|\psi \rangle$

for some β = 1/poly(n), it is MA-complete (Bravyi-Terhal '08)
Our work: if β is constant, it is in NP

Outline

- 2 MA and stoquastic Hamiltonians
- 3 Proof sketch

Theorem (BT '08)

Deciding if Unif. Stoq. LH is frustration-free or inverse polynomial frustrated is MA-complete.

Theorem (This work)

Deciding if Unif. Stoq. LH is frustration-free or constant frustrated is NP-complete.

Corollary

Suppose a deterministic polynomial-time map $\phi(H) = H'$ such that

Corollary

Suppose a deterministic polynomial-time map $\phi(H) = H'$ such that

 H' is a uniform stoquastic Hamiltonian with constant locality and degree;

Corollary

Suppose a deterministic polynomial-time map $\phi(H) = H'$ such that

- H' is a uniform stoquastic Hamiltonian with constant locality and degree;
- ❷ if H is frustration-free, H' is frustration free;

Corollary

Suppose a deterministic polynomial-time map $\phi(H) = H'$ such that

- H' is a uniform stoquastic Hamiltonian with constant locality and degree;
- **2** if H is frustration-free, H' is frustration free;
- if H is at least inverse polynomial frustrated, then H' is constantly frustrated.

Corollary

Suppose a deterministic polynomial-time map $\phi(H) = H'$ such that

- H' is a uniform stoquastic Hamiltonian with constant locality and degree;
- **2** if H is frustration-free, H' is frustration free;
- if H is at least inverse polynomial frustrated, then H' is constantly frustrated.

Then MA = NP.

Why should a map like this exist?

• PCP theorem: such a map exists for classical Hamiltonians

Why should a map like this exist?

- PCP theorem: such a map exists for classical Hamiltonians
- Quantum PCP conjecture: such a map exists for general Hamiltonians

Why should a map like this exist?

- PCP theorem: such a map exists for classical Hamiltonians
- Quantum PCP conjecture: such a map exists for general Hamiltonians

Corollary

Stoquastic PCP is equivalent to derandomization of MA
Why should a map like this exist?

- PCP theorem: such a map exists for classical Hamiltonians
- Quantum PCP conjecture: such a map exists for general Hamiltonians

Corollary

Stoquastic PCP is equivalent to derandomization of MA

Why should a map like this exist?

- PCP theorem: such a map exists for classical Hamiltonians
- Quantum PCP conjecture: such a map exists for general Hamiltonians

Corollary

Stoquastic PCP is equivalent to derandomization of MA

advance on MA vs. NP

Why should a map like this exist?

- PCP theorem: such a map exists for classical Hamiltonians
- Quantum PCP conjecture: such a map exists for general Hamiltonians

Corollary

Stoquastic PCP is equivalent to derandomization of MA

quantum PCPs are hard

advance on MA vs. NP

- (Implicit) Graph G(V, E)
 - $V = \{0, 1\}^n$
 - $\{x, y\} \in E \text{ iff } \exists i \langle x | P_i | y \rangle > 0$

- (Implicit) Graph G(V, E)
 - $V = \{0, 1\}^n$
 - $\{x, y\} \in E \text{ iff } \exists i \langle x | P_i | y \rangle > 0$

Example

• 3-qubit system $P_{1,2} = P_{2,3} = |\Psi^+\rangle\langle\Psi^+| + |\Phi^+\rangle\langle\Phi^+| \qquad |\Phi^+\rangle\langle\Phi^+| = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ $P_{1,3} = |00\rangle\langle00| + |01\rangle\langle01| + |10\rangle\langle10| \qquad |\Psi^+\rangle\langle\Psi^+| = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle)$

- (Implicit) Graph G(V, E)
 - $V = \{0, 1\}^n$
 - $\{x, y\} \in E \text{ iff } \exists i \langle x | P_i | y \rangle > 0$

- (Implicit) Graph G(V, E)
 - $V = \{0, 1\}^n$
 - $\{x, y\} \in E \text{ iff } \exists i \langle x | P_i | y \rangle > 0$
- Bad string x
 - $\exists i \text{ such that } \langle x | P_i | x \rangle = 0$

- (Implicit) Graph G(V, E)
 - $V = \{0, 1\}^n$
 - $\{x, y\} \in E \text{ iff } \exists i \langle x | P_i | y \rangle > 0$
- Bad string x
 - $\exists i \text{ such that } \langle x | P_i | x \rangle = 0$

• MA-verification:

- **1** Given a initial string x_0
- 2 Perform a random walk for poly(n) steps.
- If a bad string is encountered, reject.

- MA-verification:
 - **1** Given a initial string x_0
 - 2 Perform a random walk for poly(n) steps.
 - If a bad string is encountered, reject.

- MA-verification:
 - **1** Given a initial string x_0
 - 2 Perform a random walk for poly(n) steps.
 - If a bad string is encountered, reject.

- MA-verification:
 - **1** Given a initial string x_0
 - 2 Perform a random walk for poly(n) steps.
 - If a bad string is encountered, reject.

- MA-verification:
 - **1** Given a initial string x_0
 - 2 Perform a random walk for poly(n) steps.
 - If a bad string is encountered, reject.

- MA-verification:
 - **1** Given a initial string x_0
 - 2 Perform a random walk for poly(n) steps.
 - If a bad string is encountered, reject.

Example $\begin{array}{c} 000 \\ 101 \\ 110 \\ 011 \end{array} \begin{array}{c} 001 \\ 100 \\ 001 \end{array}$

- MA-verification:
 - **1** Given a initial string x_0
 - 2 Perform a random walk for poly(n) steps.
 - If a bad string is encountered, reject.

- MA-verification:
 - **1** Given a initial string x_0
 - 2 Perform a random walk for poly(n) steps.
 - If a bad string is encountered, reject.

Example $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\000\\110\\011\end{array}\end{array}\end{array} & \begin{array}{c} \end{array}\\001\\000\end{array} & \begin{array}{c} \end{array}\\110\\001\end{array} & \begin{array}{c} \end{array}\\000\end{array} & \begin{array}{c} \end{array}\\110\\001\\001\end{array} & \begin{array}{c} \end{array}\\001\\001\\001\end{array} \end{array}$

- MA-verification:
 - **1** Given a initial string x_0
 - 2 Perform a random walk for poly(n) steps.
 - If a bad string is encountered, reject.

Example 000 101 111 010 010 010 001 00000 0001 000000 000000 00000 0000 0000 0000 00000

- MA-verification:
 - **1** Given a initial string x_0
 - 2 Perform a random walk for poly(n) steps.
 - If a bad string is encountered, reject.

- MA-verification:
 - **1** Given a initial string x_0
 - 2 Perform a random walk for poly(n) steps.
 - 3 If a bad string is encountered, reject.

- MA-verification:
 - **1** Given a initial string x_0
 - 2 Perform a random walk for poly(n) steps.
 - 3 If a bad string is encountered, reject.

Theorem

If H is FF and x_0 is in some groundstate of H, then the verifier never reaches a bad string. If H is 1/poly(n) frustrated, then the random-walk rejects with constant probability.

Theorem

If H is ε m frustrated for some constant ε , then from every initial string there is a constant-size path that leads to a bad string.

Theorem

If H is ε m frustrated for some constant ε , then from every initial string there is a constant-size path that leads to a bad string.

Corollary

Gapped Uniform Stoquastic LH problem is in NP.

Theorem

If H is εm frustrated for some constant ε , then from every initial string there is a constant-size path that leads to a bad string.

Corollary

Gapped Uniform Stoquastic LH problem is in NP.

Proof.

Check if any of the constant-size paths reaches a bad string.

Theorem

If H is εm frustrated for some constant ε , then from every initial string there is a constant-size path that leads to a bad string.

Corollary

Gapped Uniform Stoquastic LH problem is in NP.

Proof.

Check if any of the constant-size paths reaches a bad string.

• For yes-instances, this is never the case (BT' 08).

Theorem

If H is εm frustrated for some constant ε , then from every initial string there is a constant-size path that leads to a bad string.

Corollary

Gapped Uniform Stoquastic LH problem is in NP.

Proof.

Check if any of the constant-size paths reaches a bad string.

- For yes-instances, this is never the case (BT' 08).
- For no-instances, this is always the case (previous theorem).

There is a constant-depth "circuit" of non-overlapping projectors that achieves state with a bad string

- There is a constant-depth "circuit" of non-overlapping projectors that achieves state with a bad string
 - Construct circuit layer by layer: either there is a bad string, or we can add a new layer that brings us closer to a bad string

- There is a constant-depth "circuit" of non-overlapping projectors that achieves state with a bad string
 - Construct circuit layer by layer: either there is a bad string, or we can add a new layer that brings us closer to a bad string
- From the constant-depth circuit, we can use a lightcone-argument to retrieve a constant-size path.

 $|S_1\rangle = |x_1\rangle$

1 string

States with a bad string

States with a bad string

Finding a bad string

Pick $L = \frac{\varepsilon m}{2kd}$, the frustration is at least $\frac{\varepsilon}{2}$, there is a constant T such that $|S_T\rangle = |+\rangle^{\otimes n}$

States with a bad string

Finding a bad string

Pick $L = \frac{\varepsilon m}{2kd}$, the frustration is at least $\frac{\varepsilon}{2}$, there is a constant T such that $|S_T\rangle = |+\rangle^{\otimes n} \Rightarrow$ there is a bad string in $|S_T\rangle$.

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Related results

- Relax frustration-free assumption to negligible frustration.
- Commuting frustration-free stoquastic Hamiltonian is in NP (for any gap)
- "Classical" definition of the problem

Open problems

- Prove/disprove Stoquastic PCP conjecture
- Non-uniform case
 - There are highly frustrated Hamiltonians with no bad strings
 - Frustration comes from incompatibility of amplitudes

$$\sqrt{1-\varepsilon} \left| 0 \right\rangle + \sqrt{\varepsilon} \left| 1 \right\rangle$$
 vs. $\sqrt{\varepsilon} \left| 0 \right\rangle + \sqrt{1-\varepsilon} \left| 1 \right\rangle$

Add more tests

BT has a consistency test, but not clear that it is "local"

• Connections to Hodge theory

Thank you for your attention!