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Preface

In these notes we first develop the fundamentals of differential geometry, and
then specialize to Riemannian geometry. Subsequently we describe Einstein’s
theory of general relativity, which is built on the foundations of Riemannian
geometry.

To a large extent we follow the excellent monograph Introduction to smooth
manifolds by John M. Lee [L03]. A notable exception is that we introduce
tangent vectors using curves rather than derivations. Further we made extensive
use of Riemannian geometry: an introduction to curvature by Lee [L97] and
Gauge fields, knots and gravity by John Baez and Javier Muniain [BM94] for
the description of Riemannian geometry and general relativity.

There are many topics which one could reasonably expect in an introduction
to differential geometry, but which are not covered in these notes. Although it
would take too long to list all of them, the most painful omission is undoubtedly
the theory of integration on manifolds and Stokes’ theorem, for which we refer
to Chapter 16 of [L03]. Two further topics on the interface of mathematics
and physics that are missing from this introductory text are the appearance of
symplectic geometry in hamiltonian mechanics, and the use of principal bundles
and connections in gauge theory. For the reader whose interest has been primed
by these brief notes, the above sources may provide a useful starting point for
further study.

Notation

For two sets X and Y , we denote by X \ Y the set of all elements of X that
are not in Y . The intersection is denoted by X ∩ Y , the union by X ∪ Y , and
the disjoint union by X t Y . For a function F : X → Y and subsets U ⊆ X
and V ⊆ Y , we denote by F (U) := {F (x) ; x ∈ U} the image of U in Y , and by
F−1(V ) := {x ∈ X ; F (x) ∈ V } the preimage of V in X. We denote by C× the
complex numbers with 0 deleted.
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1 Euclidean and Minkowski geometry

It is perhaps fair to say that modern geometry started in 1872, when Felix Klein
formulated his Erlanger Programm. The central idea of this program is to study
geometry in terms of its group of symmetries. We start by considering two types
of geometry: Euclidean geometry and Minkowski geometry.

In the case of Euclidean geometry, the Erlanger Programm amounts to study-
ing Euclidean space in terms of the Euclidean motion group. This is the group
of all transformations that preserve the Euclidean metric.

Minkowski geometry is the type of geometry that captures Einstein’s special
theory of relativity. The Erlanger Programm then amounts to studying the
Poincaré group, the group of all transformations that preserve the Minkowski
metric.

Both Euclidean geometry and Minkowski geometry are essentially linear in
nature. In Euclidean geometry, the difference between two points is a vector
in Rn. The Euclidean metric is adapted to the linear structure, in the sense
that the shortest path between two points is a straight line. The central topic
in this course is to develop Riemannian geometry, a generalization of Euclidean
geometry to a certain type of nonlinear spaces called smooth manifolds.

In special relativity, the difference between two points in space-time is a
vector in R4, and the speed of light is encoded by the Minkowski metric. Just
like Euclidean geometry, Minkowski geometry is linear in the sense that every
light ray is a line segment. And just like Euclidean geometry can be general-
ized to Riemannian geometry, Minkowski geometry has a nonlinear counterpart
called Lorentzian geometry. The step from Minkowski geometry to Lorentzian
geometry is what allowed Einstein to make the step from special to general
relativity.

After a brief introduction to Euclidean and Minkowski geometry in Section 1,
we will spend most of our time developing the theory of smooth manifolds,
in Sections 2 through 8. These are the foundations on which we construct
Riemannian geometry in Section 9. Finally, in Section 10, we take the step from
Riemannian to Lorentzian geometry, arriving at Einstein’s theory of general
relativity.

1.1 Euclidean geometry and the Euclidean motion group

In Euclidean geometry, the central postulate is that

Distance is the same in all orthogonal frames.

Let us make this precise. We model Euclidean space En by the set Rn,
equipped with the metric

d(p, q) =
√

(p− q, p− q), (1)

where (v, w) := v1w1 + . . .+ vnwn denotes the standard inner product.
The point E0, the line E1, the plane E2 and the space E3 are perhaps the

most familiar examples. But once you put them on the same footing by writing
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En with n ∈ {0, 1, 2, 3}, you soon realise that you may as well allow Euclidean
spaces of arbitrary dimension n ∈ N.

A coordinate system is a bijection x : En → Rn, assigning to each point
p ∈ En a unique set x(p) := (x1(p), . . . , xn(p)) of coordinates. The metric on
En singles out a distinguished set of coordinates on En, namely the orthogonal
frames. An orthogonal frame is a set of coordinates in which the distance is
represented correctly,

d(p, q) = d(x(p), x(q)) for all p, q ∈ En.

Suppose that a different observer uses a different orthogonal frame x(p) =
(x1(p), . . . , xn(p)). Then we may express the new coordinates x(p) in terms of
the old coordinates x(p) by means of a coordinate transformation

x(p) = κ(x(p)).

Here κ : Rn → Rn is a transformation that preserves the metric,

d(κ(x), κ(y)) = d(x, y) for all x, y ∈ Rn. (2)

In other words, κ is an isometry with respect to d.

Definition 1.1 (Euclidean motion group). The group of all isometries of the
Euclidean metric d is called the Euclidean motion group E(n).

This is clearly a group: the identity transformation is an isometry, if two
transformations κ and κ′ preserve the Euclidean metric, then so does their
concatenation κ ◦ κ′, and if κ is an isometry, then so is its inverse κ−1.

A simple example of an isometry is the translation Tv : Rn → Rn, defined by
Tv(x) := x + v. It shifts every point by v ∈ Rn. A linear map R : Rn → Rn is
called an orthogonal transformation if it preserves the inner product, (Rx,Ry) =
(x, y) for all x, y ∈ Rn. With respect to an orthonormal basis in Rn, every
orthogonal transformation is represented by an orthogonal n × n matrix. We
can therefore identify the group of orthogonal transformations with

O(n) = {R ∈Mn(R) ; RTR = Idn}.

In dimension 2 and 3, orthogonal transformations are either rotations or reflec-
tions.

Problem 1.2. Equipped with the matrix multiplication, O(n) is a group.

Every orthogonal transformation R : Rn → Rn is an isometry, since

d(Rx,Ry)2 = (Rx−Ry,Rx−Ry)) = (x− y, x− y) = d(x, y)2.

Since both the translation Tv and the orthogonal transformation R are isome-
tries, so is their product

(Tv ◦R)(x) = Rx+ v. (3)

In fact, it turns out that every isometry is of this form.
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Theorem 1.3. Every element of E(n) can be decomposed into an orthogonal
transformation and a translation,

E(n) = {Tv ◦R ; v ∈ Rn, R ∈ O(n)}.

To prove Theorem 1.3, we will need a number of lemmas. Let κ : Rn → Rn
be an isometry. If we set v := κ(0), then the map R := T−v ◦ κ is an isometry
that fixes the origin, R(0) = 0. To prove the theorem, it suffices to prove that
R ∈ O(n). We start by showing that R preserves midpoints.

In the Euclidean space En, the midpoint m(x, y) := 1
2 (x+ y) between x and

y is the unique point m that satisfies

d(m,x) = d(m, y) = 1
2d(x, y).

Lemma 1.4. Every isometry κ preserves midpoints:

κ(m(x, y)) = m(κ(x), κ(y)).

Proof. If m satisfies d(m,x) = d(m, y) = 1
2d(x, y), then since κ is an isometry,

κ(m) satisfies d(κ(m), κ(x)) = d(κ(m), κ(y)) = 1
2d(κ(x), κ(y)). It follows that

κ(m) is a midpoint between κ(x) and κ(y). Since midpoints are unique in
Euclidean space, we have m(κ(x), κ(y)) = κ(m(x, y)).

Next, we show that every isometry R : Rn → Rn with R(0) = 0 preserves
the inner product, (R(x), R(y)) = (x, y) for all x, y ∈ Rn. For this we use the
following polarisation identity, which expresses the inner product in terms of
the metric.

Lemma 1.5 (Polarisation identity). For x, y ∈ Rn, we have

(x, y) = d(m(x, y), 0)2 − 1
4d(x, y)2.

Proof. Since d(x, y)2 = (x− y, x− y) and d(x+ y, 0)2 = (x+ y, x+ y), we have

d(x, y)2 = (x− y, x− y) = (x, x)− 2(x, y) + (y, y) and (4)

d(x+ y, 0)2 = (x+ y, x+ y) = (x, x) + 2(x, y) + (y, y). (5)

Since d(x+y, 0)2 = 4d(m(x, y), 0)2, the result follows by subtracting (4) from (5)
and dividing the result by four.

Since the isometry R preserves midpoints and the origin, it preserves the
inner product as well:

(R(x), R(y)) = d
(
m(R(x), R(y)), 0

)2 − 1
4d
(
R(x), R(y)

)2
= d

(
R(m(x, y)), R(0)

)2 − 1
4d(x, y)2

= d
(
m(x, y), 0

)2 − 1
4d(x, y)2

= (x, y).
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It remains to show thatR is linear. Let e1, . . . , en be an orthonormal basis of Rn.
Since R preserves inner products as well as the origin, the vectors e′1 := R(e1),
. . . , e′n := R(en) are orthonormal. In particular the n vectors e′1, . . . , e

′
n are

independent, and they form a basis of Rn.
The coefficients of x ∈ Rn with respect to the orthonormal basis e1, . . . , en

are xi = (x, ei). Similarly, the coefficients of Rx with respect to e′i are x′i :=
(Rx, e′i). But since R preserves the inner product, these coefficients are the
same:

x′i = (Rx, e′i) = (Rx,Rei) = (x, ei) = xi.

It follows that

R

(
n∑
i=1

xiei

)
=

n∑
i=1

xie
′
i.

In particular, R is a linear map. And since R preserves inner products, it is an
orthogonal linear transformation. This concludes the proof of Theorem 1.3.

Problem 1.6. Show that every element of O(2) is of the form

R = S

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
where S is one of the two matrices

1 =

(
1 0
0 1

)
, P =

(
1 0
0 −1

)
.

Give an explicit description of the Euclidean motion group E(2).

The central theme of Klein’s Erlanger programm is to study geometry in
terms of its group of symmetries. In the following problem, we express the
geometric notion of length in group theoretic terms.

Problem 1.7. Consider the diagonal action of the Euclidean motion group E(2)
on R2×R2, defined by κ · (x, y) = (κ(x), κ(y)). Then two line segments AB and
A′B′ are of equal length if and only if their endpoints (A,B), (A′, B′) ∈ R2×R2

are in the same orbit of E(2).

Similarly, the geometric problem of congruence of triangles can be expressed
in terms of orbits for the Euclidean motion group.

Problem 1.8. Consider the diagonal action of the Euclidean motion group
E(2) on R2 × R2 × R2, defined by κ · (x, y, z) = (κ(x), κ(y), κ(z)). Then
two triangles ABC and A′B′C ′ are congruent if and only if their vertices
(A,B,C), (A′, B′, C ′) ∈ R2 × R2 × R2 are in the same orbit of E(2).

1.2 Special Relativity and the Lorentz group

In 1905, Einstein introduced his special theory of relativity. It features a special
type of coordinate systems called inertial frames. The central postulate in the
special theory of relativity is that
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The speed of light has the same value c in all inertial frames.

If you have not seen this before, you may wish to pause here for a second, and
reflect on how strange this statement is.

Suppose that observer A uses coordinates (t, x, y, z) to describe space–time.
A ray of light comes by, travelling in the x-direction. Observer A measures
its coordinates to be x(t) = ct, and concludes that it has speed ∆x/∆t = c.
Now imagine that observer B is moving at speed v in the x-direction relative to
observer A. If observer B is at rest with respect to the coordinates (t, x, y, z),
then it seems reasonable to relate these coordinates by the Galilei transformation

t = t, x = x− vt, y = y, z = z. (6)

Observer B will describe the ray of light by x(t) = (c− v)t, and conclude that
it moves at speed ∆x/∆t = c− v. This means that observer A and B come to
different conclusions as to the speed of light, violating the central postulate in
the special theory of relativity.

Apparently, then, inertial frames are not related by Galilei transformations
of the type (6). This leaves us with two burning questions: If inertial frames
are not related by Galilei transformations, how should they be related? And,
for that matter, what are these inertial frames precisely?

In order to answer these questions, Hermann Minkowski introduced a type
of geometry that is radically different from Euclidean geometry. The Minkowski
space M4 is the set R4, equipped with the Minkowski metric

S2(p, q) = η(p− q, p− q),

where η : R4 × R4 → R is the nondegenerate bilinear form

η(v, w) := −v0w0 + v1w1 + v2w2 + v3w3 . (7)

The word ‘metric’ is misleading, since the ‘Minkowski metric’ is not a metric in
the usual sense of the word. The minus sign in (7) makes that η(v, v) can be
negative or even zero, and the same holds for S2(p, q).

An inertial frame for M4 is a coordinate system p 7→ (t(p), x(p), y(p), z(p))
that respects the Minkowski metric in the following sense:

S2(p, q) = S2
((
ct(p), x(p), y(p), z(p)

)
,
(
ct(q), x(q), y(q), z(q)

))
. (8)

Just like an orthogonal frame is a linear coordinate system in which the inner
product on Euclidean space takes the standard form, an inertial system is a
linear coordinate system on M4 in which the Minkowski metric takes a standard
form.

The significance of these coordinate systems is that the speed of light has
the same value c in every inertial frame. Indeed, suppose that a beam of light
is emitted at a space-time point p ∈ M4, and absorbed at a space–time point
q ∈M4. Two observers, using two different inertial frames t, x, y, z and t, x, y, z,
will then calculate the speed of light as follows.
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The first observer, using coordinates t, x, y, z, will assign space–time co-
ordinates t(p), x(p), y(p), z(p) and t(q), x(q), y(q), z(q) to the emission and ab-
sorption of the light ray. Calculating the differences ∆t = t(q) − t(p), ∆x =
x(q) − x(p), ∆y = y(q) − y(p) and ∆z = z(q) − z(p), this observer concludes
that the speed of light is

c =

√
(∆x)2 + (∆y)2 + (∆z)2

∆t
,

or, equivalently, that

0 = −c2(∆t)2 + (∆x)2 + (∆y)2 + (∆z)2. (9)

Since this is equivalent to S2(p, q) = 0, the other observer, using inertial coor-
dinates t, x, y, z, will conclude that

0 = −c2(∆t)2 + (∆x)2 + (∆y)2 + (∆z)2, (10)

and hence that √
(∆x)2 + (∆y)2 + (∆z)2

∆t
= c

for the same constant c. In other words, the two observers, using different
inertial frames t, x, y, z and t, x, y, z, will measure the same speed c.

To express the inertial frame t, x, y, z of one observer in terms of the inertial
frame t, x, y, z of the other observer, we need a transformation κ : R4 → R4 that
respects the Minkowski metric.

Definition 1.9 (Poincaré group). The Poincaré group P is the group of all
bijections κ : R4 → R4 such that S2(κ(p), κ(q)) = S2(p, q).

Just like the Euclidean motion group is the group of symmetries of (En, d),
the Poincaré group is the group of symmetries of (M4, S2). Clearly, every trans-
lation Tv(ξ) = ξ + v is an element of the Poincaré group. A Lorentz transfor-
mation is a linear map Λ: R4 → R4 that respects the bilinear form η,

η(Λv,Λw) = η(v, w) for all v, w ∈ R4. (11)

The group of Lorentz transformations is denoted O(3, 1). Every Lorentz trans-
formation is an element of the Poincaré group, since

S2(Λv,Λw) = η
(

Λ(v − w),Λ(v − w)
)

= η(v − w, v − w) = S2(v, w).

In fact, every element of the Poincaré group is of the form κ(ξ) = Λξ + v.

Theorem 1.10. Every element of the Poincaré group P can be decomposed in
a translation and a Lorentz transformation,

P = {Tv ◦ Λ ; v ∈ R4,Λ ∈ O(3, 1)}.
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To describe the Lorentz group more explicitly, we express η in terms of the
usual inner product

(v, w) := v0w0 + v1w1 + v2w2 + v3w3

and the diagonal matrix
H := diag(−1, 1, 1, 1)

as η(v, w) = (v,Hw). From (11), we then find that

(Λv,HΛw) = (v,Hw)

for all v, w, so that ΛTHΛ = H. We find that the Lorentz group is given by

O(3, 1) = {Λ ∈M(4,R) ; ΛTHΛ = H}.

Problem 1.11. Prove that O(3, 1) is a group.

Problem 1.12. For two-dimensional Minkowski space, the corresponding sym-
metry group is

O(1, 1) = {Λ ∈M(2,R) ; ΛTHΛ = η},

where H = diag(−1, 1) is the diagonal matrix with entries −1 and 1. Show that
every element Λ ∈ O(1, 1) is of the form

Λ = R

(
cosh(χ) sinh(χ)
sinh(χ) cosh(χ)

)
,

with χ ∈ R and where R is one of the four matrices

1 =

(
1 0
0 1

)
, P =

(
1 0
0 −1

)
, T =

(
−1 0
0 1

)
, PT =

(
−1 0
0 −1

)
.

Problem 1.13 (Time dilation and length contraction). Observer B moves with
speed v in the x-direction relative to observer A. Observer B is at rest with
respect to the inertial frame (t, x, y, z), and observer A is at rest with respect
to the inertial frame (t, x, y, z). There is one point O in space–time at which
both observers coincide, and they agree to put their space–time origin there.
Since their relative motion is in the x-direction, both observers agree on the y
and z-coordinates. The relation between their inertial frames is given by the
Lorentz transformation

ct
x
y
z

 =


cosh(χ) sinh(χ) 0 0
sinh(χ) cosh(χ) 0 0

0 0 1 0
0 0 0 1



ct
x
y
z

 .

Since observer B is at rest with respect to the inertial frame (t, x, y, z), her
space–time coordinates in this frame are described by the curve

(t(τ), x(τ), y(τ), z(τ)) = (τ, 0, 0, 0).
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a) Express the space–time position of observerB in the inertial frame (t, x, y, z),
and determine the speed v = ∆x/∆t in terms of χ.

b) Determine cosh(χ) and sinh(χ) in terms of v.

c) According to observer B, a time ∆t = τ has elapsed between the space–
time points with coordinates (t, x, y, z) = (0, 0, 0, 0) and (t, x, y, z) =
(τ, 0, 0, 0). Determine the amount of time ∆t that has elapsed accord-
ing to observer A, and derive the time dilation formula

∆t/∆t =
1√

1− v2/c2
.

In particular, a moving clock will tick more slowly than one that is standing
still.

c) Observer B is holding a rod of length L, and she points it in the x-
direction. In her inertial system (t, x, y, z), the two endpoints of the rod
then trace out the curves τ 7→ (τ, 0, 0, 0) and s 7→ (s, L, 0, 0). Transform
these two lines to the inertial system (t, x, y, z), and determine the dif-
ference ∆x between the x-coordinates of these two curves at t = 0. The
length of the rod as measured by observer A is then L = |∆x|. Derive the
length contraction formula

L/L =
√

1− v2/c2.

In particular, a moving rod will be shorter than one that is standing still.

Problem 1.14 (The orthochronous Lorentz group). LetH = {v ∈ R4 ; η(v, v) = −1}
be the hyperboloid in R4.

a) Show that it consists of two sheets H± = {v ∈ H ; ±v0 ≥ 1}.

b) Show that every g ∈ O(3, 1) maps H to itself, g(v) ∈ H for all v ∈ H.

c) The orthochronous Lorentz group O↑(3, 1) is the set of all g ∈ O(3, 1) that
map H+ to itself, g(v) ∈ H+ for all v ∈ H+. Show that O↑(3, 1) is a
normal subgroup of index 2.

d) Show that O↑(3, 1) is both open and closed in O(3, 1) with respect to the
subspace topology of O(3, 1) ⊆M4(R).
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2 Manifolds

In many applications, one has to deal with (partial) differential equations on
spaces M with a geometry which is not that of the familiar Euclidean space
Rn. To handle such situations, we need to understand what it means for a
function to be differentiable. The notion of a smooth manifold allows one to
handle differentiability in a rather general context.

Roughly speaking, a smooth manifold is a topological space that ‘locally
looks like Rn’. This allows us to transport the entire machinery of calculus to
the world of differential geometry. Also, one can formulate partial differential
equations in this setting, such as the Einstein equation in general relativity, the
Poisson equation in harmonic analysis, and the Cauchy–Riemann equation in
complex geometry.

2.1 Definition of a smooth manifold

We want to define a manifold M as a topological space that ‘locally looks
like Rn’. Using the tools from Appendix A, we can make this statement more
precise: we require that every point p ∈ M has a neighbourhood U ⊆ M that
is homeomorphic to an open subset of Rn.

Definition 2.1 (Charts). A chart on M is a homeomorphism

φ : M ⊇ U → φ(U) ⊆ Rn

from an open subset U ⊆M to an open subset φ(U) ⊆ Rn.

In other words, φ identifies an open neighbourhood U in M with an open
neighbourhood φ(U) in Rn. The open subsets U ⊆ M are called coordinate
patches, and we think of φ(p) ∈ Rn as the coordinates of p with respect to the
chart (U, φ). To emphasize this point of view, we write

φ(p) = (x1(p), . . . , xn(p)) ,

where xµ(p) is the µth coordinate of p with respect to the chart (U, φ).

Definition 2.2 (Topological Atlas). Let A = {(Uα, φα) ; α ∈ A} be a collection
of charts, labelled by an index set A. We say that A is a topological atlas for
M if M is the union of the coordinate patches, M =

⋃
α∈A Uα.

Let (Uα, φα) and (Uβ , φβ) be two charts with nonempty intersection Uα ∩ Uβ ,
and let p ∈ Uα ∩ Uβ . Then the transition function καβ maps the coordinates
φα(p) = (x1, . . . , xn) of p with respect to the chart (Uα, φα) to the coordinates

φβ(p) = (x1, . . . , xn) of the same point p with respect to the other chart (Uβ , φβ).
Note that the the transition function καβ is only defined if p is in the intersection
Uα ∩ Uβ of the two coordinate patches, and it is completely determined by the
two charts φα and φβ ,

καβ : φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ) is defined by καβ := φβ ◦ φ−1
α . (12)
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Since φα and φβ are homeomorphisms, the transition functions καβ = φβ ◦ φ−1
α

and κβα = φαφ
−1
β are automatically homeomorphisms as well.

Definition 2.3 (Smooth Atlas). Two charts (Uα, φα) and (Uβ , φβ) are called
compatible if both καβ and κβα are smooth. A topological atlas A is called
smooth is all its charts are compatible.

We define a smooth manifold as a Hausdorff topological space M , together
with a collection A of coordinate patches that covers M , and for which all
transition functions are smooth.

Definition 2.4 (Smooth manifold). A smooth manifold is a Hausdorff topolog-
ical space M , together with a smooth atlas A. We say that M is of dimension
n if its charts take values in Rn.

Figure 1: Transition function between two charts (Uα, φα) and (Uβ , φβ)

Remark 2.5 (Equivalent atlases). Two smooth atlases A1 and A2 are called
equivalent if their charts are mutually compatible. We will usually not distin-
guish the corresponding manifold structures on M .

Remark 2.6. Sometimes non-Hausdorff manifolds also make an appearance
in the literature (e.g. in connection to foliations), but this remains somewhat
exceptional. In contrast to the usual definition in the literature, we will not
require M to be second countable.

2.2 Smooth functions

For a topological space X, there is a natural notion of continuous functions
f : X → R (cf. Appendix A.2). For a manifold M , there is even a natural no-
tion of smooth functions f : M → R, which is not available in general topological
spaces. Using a chart (Uα, φα) around p ∈M , we can locally represent the func-
tion f on the subset Uα of M by the coordinate representation fα : φα(Uα)→ R,
defined by

fα := f ◦ φ−1
α .
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The coordinate representation fα of f tells us what f looks like if you use the
coordinates (φα, Uα). Indeed, if the coordinates of p are φα(p) = (x1, . . . , xn),
then f(p) = fα(x1, . . . , xn). Since fα is defined on the open subset φα(Uα) of
Rn, it makes perfect sense to ask for fα to be smooth at (x1, . . . , xn)!

Definition 2.7 (Differentiable and smooth functions). A function f : M → R is
differentiable/smooth at p ∈M if for some chart Uα containing p, the coordinate
representation fα : Rn ⊃ φα(Uα)→ R is differentiable/smooth at φα(p) ∈ Rn.

Figure 2: Coordinate representation fα = f ◦ φ−1
α

In fact, the above definition does not depend on the choice of coordinates. In
order to show this, we need the smoothness of the transition functions. Suppose
that p ∈ Uα ∩ Uβ lies in the intersection of two coordinate patches Uα and Uβ ,
and suppose that the coordinate representation fα = f ◦φ−1

α is smooth at φα(p).
Then since the transition function κβα := φα◦φ−1

β is smooth at φβ(p), the chain
rule applied to

(f ◦ φ−1
α ) ◦ κβα = (f ◦ φ−1

α ) ◦ (φα ◦ φ−1
β ) = f ◦ (φ−1

α ◦ φα) ◦ φ−1
β = f ◦ φ−1

β (13)

shows that fβ = f ◦φ−1
β is smooth at φβ(p) as well. A similar argument with α

and β interchanged shows that fα is smooth at φα(p) if and only if fβ is smooth
at φβ(p).

We say that f : M → R is smooth if it is smooth at any point p ∈M , and we
denote the set of smooth functions by C∞(M). As on Rn, adding or multiplying
smooth functions yields smooth functions again.

Proposition 2.8 (C∞(M) is an algebra). If f, g ∈ C∞(M) and λ ∈ R, then

(1) λf ∈ C∞(M),

(2) f + g ∈ C∞(M),

(3) fg ∈ C∞(M).

Proof. For (3), note that if f and g are smooth in p ∈M , then their coordinate
representations f ◦φ−1

α and g◦φ−1
α with respect to the chart (Uα, φα) are smooth

at φα(p). But then the coordinate representation (fg)◦φ−1
α = (f ◦φ−1

α )·(g◦φ−1
α )

is smooth as well, so fg is smooth at p. The proof of property (2) is similar,
and (1) follows from (3) applied to the constant function g = λ1.
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2.3 Examples of manifolds

To get a feeling for the definition of a manifold, let us consider two examples:
spheres and tori.

2.3.1 The sphere

To get a feeling for the precise definition of a manifold, we consider the 2-sphere

S2 :=
{

(ξ, η, ζ) ∈ R3 ; ξ2 + η2 + ζ2 = 1
}
.

Since S2 is a subset of R3, it is a topological space with the subset topology. We
show that S2 is a smooth manifold that is covered by two coordinate charts.

Let n := (0, 0, 1) be the North Pole in S2, and let s := (0, 0,−1) be the South
Pole. The first way of assigning coordinates (x, y) ∈ R2 to a point p in S2 is
good for every point p ∈ S2 except the north pole. Draw a straight line pn from
p to the north pole n, and let q be the intersection of pn with the xy-plane. If
q = (x, y, 0), then we say that the coordinates of p are (x, y).

Figure 3: A chart for S2 centered at the south pole

Problem 2.9. The coordinates (x, y) of a point p = (ξ, η, ζ) in S2 are

(x, y) =

(
ξ

1− ζ
,

η

1− ζ

)
.

The open set Un := S2 \ {n} where these coordinates make sense the coordi-
nate neighbourhood, and the map φn : S2 ⊇ Un → R2 that assigns to the point
p = (ξ, η, ζ) its coordinates

φ1(p) =

(
ξ

1− ζ
,

η

1− ζ

)
(14)

is called a chart. This type of chart is useful for a cartographer living at the
South Pole, but it has terrible distortion close to the North Pole.

Problem 2.10. Show that φn : Un → R2 is a homeomorphism. (Problem A.20
may be of use here.)
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The second way of assigning coordinates to p is analogous, except that n
and s are reversed. We now draw a line ps from p to the South Pole s, and
determine the coordinates (x, y) from the intersection q′ = (x, y, 0) of ps with
the xy-plane. These coordinates make sense in the coordinate neighbourhood
Us = S2 \ {s}, and the corresponding coordinate chart φs : Us → R2 is

φs(p) =

(
ξ

1 + ζ
,

η

1 + ζ

)
. (15)

Needless to say, this type of chart is useful for a cartographer living at the North
Pole.

We have covered S2 with two coordinate neighbourhoods Un = S2 \ {n} and
Us = S2 \ {s}. To check that it is a smooth manifold, it remains to show that
the transition functions are smooth. If p ∈ S2 has coordinates (x, y) ∈ R2 with
respect to the chart (U1, φ1), and coordinates (x, y) ∈ R2 with respect to the
chart (U2, φ2), then κns maps (x, y) to (x, y). Note that this transition function
only makes sense for points p ∈ Un ∩ Us that have a coordinate representation
in both charts, so κns := φs ◦ φ−1

n is a map from φn(Un ∩ Us) to φs(Un ∩ Us).

Problem 2.11. Show that φn(Un∩Us) = φs(Un∩Us) = R2 \{(0, 0)}, and give
an explicit expression for κns : (R2 \ {(0, 0)}) → (R2 \ {(0, 0)}). Conclude that
both transition functions κns and κsn are smooth.

Now that we have covered S2 by the two coordinate neighbourhoods Un and
Us, we can define what it means for a function f : S2 → R to be differentiable.
From the charts φn : Un → R2 and φs : Us → R2, we get two coordinate repre-
sentations fn := f ◦ φ−1

n and fs := f ◦ φ−1
s of the function f . They tell us what

f looks like for that choice of coordinates.
For the north pole p = n, we have to use the chart (Us, φ2) to see if f is

differentiable at n. For the south pole s, we have to use the chart (Un, φ1).
But for p ∈ Un ∩ Us = S2 \ {n, s}, we can use either (Un, φn) or (Us, φs).
This does not introduce any ambiguity: because the transition functions are
smooth, f ◦ φ−1

n is smooth at φn(p) = (x, y) if and only if f ◦ φ−1
s is smooth

at φs(p) = (x, y). If we think of the two different coordinate charts (Un, φn)
and (Us, φs) as two different cartographers trying to describe the globe, then we
conclude that they agree on the differentiability of f : S2 → R at p as soon as p
occurs on both of their maps.

Problem 2.12. Is the function f(ξ, η, ζ) = ζ differentiable on all of S2?

Problem 2.13 (Sn as a manifold). Find coordinate charts for the n-sphere

Sn := {(x0, . . . , xn) ∈ Rn+1 ; (x0)2 + . . .+ (xn)2 = 1},

and prove that it is a smooth manifold of dimension n.

2.3.2 The torus

The 2-torus T2 := R2/∼ is the quotient of R2 by the relation that identifies
x, x′ ∈ R2 if and only if x− x′ ∈ Z2. Since it is the quotient of the topological
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space R2 by an equivalence relation, it is a topological space itself. It is not
hard to see that T2 is Hausdorff.

Problem 2.14. Let S1 := {eiφ ; φ ∈ [0, 2π)} be the unit circle. Show that the
map T2 → S1 × S1 defined by [(x, y)] 7→ (e2πix, e2πiy) is well defined, and show
that it is a bijection.

To show that T2 is a manifold, we introduce charts as follows. For c ∈ R2

and 0 < r < 1/2, let Bc(r) ⊆ R2 be the open ball in R2 with centre c and radius
r, that is, Bc(r) = {v ∈ R2 ; ‖v − c‖ < r}. For α := (c, r), we define Uα ⊆ T2

as Uα := {[v] ; v ∈ Bc(r)}, and we define the inverse chart φ−1
α : Bc(r)→ Uα by

φ−1
α (v) = [v]. It is bijective because φ−1

α (v) = φ−1
α (w) implies that v − w ∈ Z2,

and hence that v = w because ‖v−w‖ ≤ ‖v−c‖+‖c−w‖ < 2r < 1. One readily
checks that φα is a homeomorphism, so it remains to check that the transition
functions are smooth.

Problem 2.15 (T2 as a manifold). Show that the transition functions are
smooth, and conclude that T2 is a manifold.

The 2-torus T2 can be visualized as follows. Since every [(x, y)] ∈ T2 has
precisely one representative (x, y) in [0, 1) × [0, 1), we can think of T2 as the
square [0, 1)×[0, 1). Since [(x, 0)] = [(x, 1)], the bottom of the square is identified
with the top, and since [(0, y)] = [(1, y)], the left and right hand sides of the
square are identified.

Problem 2.16 (Tn as a manifold). The n-torus is defined as Tn = Rn/∼, where
v ∼ w if v − w ∈ Zn. Find charts that cover Tn, and show that the transition
functions are smooth. Show that the charts are homeomorphisms onto their
image, and conclude that Tn is a manifold.

Problem 2.17. The Möbius strip M = {[(x, y)] ; (x, y) ∈ R2} is the quotient
of R2 by the following relation: (x, y) ∼ (x′, y′) if there exists an n ∈ Z such
that (x′, y′) = (x+ n, (−1)ny).

a) Make a sketch of the Möbius strip – or at least the part with y ∈ (−1, 1).

b) Show that the quotient map ψ : R2 → M defined by ψ(x, y) = [(x, y)] is
not injective. Show that its restriction to any open ball Bc(r) of radius
r < 1/4 around c = (x0, y0) is injective.

c) The inverse φc,r : M ⊃ ψ(Bc(r))→ Bc(r) ⊂ R2 of ψ on Bc(r) is a homeo-
morphism, and serves as a chart for M . Show that the transition function
between (ψ(Bc(r)), φc,r) and (ψ(Bc′(r

′)), φc′,r′) is smooth.

Problem 2.18 (Open submanifolds). Prove that an open subset U ⊆ M of a
manifold M is a manifold of the same dimension.

Problem 2.19 (Products of manifolds are manifolds). Prove that a product
of two manifolds M and N of dimension m and n is a manifold of dimension
m+n. (Hint: if (Uα, φα) and (Vα′ , ψα′) are coordinate charts for M and N , try
φα × ψα′ : Uα × Vα′ → φα(Uα)× ψα′(Vα′) ⊆ Rn × Rm as a chart for M ×N .)
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2.4 Smooth maps

If M and N are smooth manifolds, we can define not only smooth maps from
M to R, but also from M to N .

2.4.1 Smooth maps between manifolds

Recall that a function f : M → R on a manifold M is smooth at p ∈ M if, for
some chart (Uα, φα) around p, the coordinate representation fα := f ◦ φ−1

α of f
is smooth at the coordinate φα(p) of p.

The definition for a map F : M → N from a manifold M to a manifold N to
be smooth at p ∈M is similar, except that we now need two charts. One chart
(Uα, φα) in M around p ∈M , and one chart (Vβ , ψβ) in N around F (p) ∈ N .

If F (Uα) ⊆ Vβ , then the coordinate representation of F around p is

Fαβ := ψβ ◦ F ◦ φ−1
α , (16)

considered as a map from φα(Uα) ⊆ Rn to ψβ(Vβ) ⊆ Rm. If F (p) = q, then
Fαβ maps the coordinate φα(p) = (x1, . . . , xn) of p to the coordinate ψβ(q) =
(y1, . . . , ym) of q.

Definition 2.20 (Smooth maps). A continuous map F : M → N is differen-
tiable (or smooth) at p ∈M if there exist coordinate charts (Uα, φα) in M and
(Vβ , ψβ) in N such that p ∈ Uα, F (p) ∈ Vβ , and the coordinate representation
Fαβ is differentiable (or smooth) at the coordinate φα(p) ∈ Rn.

This definition is independent of the choice of charts. If (Uα′ , φα′) and
(Vβ′ , ψβ′) are other charts around p ∈ M and F (p) ∈ N , respectively, then
Fβ′α′ can be expressed in terms of Fβα as

Fα′β′ := ψβ′ ◦F ◦φ−1
α′ = (ψβ′ ◦ψ−1

β )◦(ψβ◦F ◦φ−1
α )◦(φα◦φ−1

α′ ) = κββ′ ◦Fαβ◦κα′α.

The new coordinate representation is differentiable (or smooth) at p because
both transition functions are so.

Figure 4: Smoothness of a function does not depend on the charts

If (x1, . . . , xn) are the coordinates of p ∈M and (y1, . . . , ym) are the coordi-
nates of F (p) ∈ N for the same point p, then yν (with ν = 1, . . . ,m) is a smooth
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function of the xµ (with µ = 1, . . . , n). Indeed, yν(x1, . . . , xn) is simply the νth
coordinate of Fαβ(x1, . . . , xn).

Proposition 2.21. If F : M → N is differentiable (or smooth) at p ∈ M , and
G : N → L is differentiable (or smooth) at F (p) ∈ N , then G ◦ F : M → L is
differentiable (or smooth) at p.

Proof. With respect to charts (Uα, φα) for M around p, (Vβ , ψβ) for N around
F (p) and (Wγ , χγ) for L around G ◦F (p), we have (G ◦F )αγ = Gβγ ◦ Fαβ .

Now that we have a good notion of smooth maps between smooth manifolds,
we can formulate what it means for two smooth manifolds to be ‘similar’.

Definition 2.22. A diffeomorphism φ : M → N is a smooth bijection for which
the inverse φ−1 : N →M is smooth as well.

We call M and N diffeomorphic if there exists a diffeomorphism between
them. Diffeomorphic manifolds are ‘the same’ as far as their manifold properties
are concerned – in much the same way that vector spaces are ‘the same’ if they
are linearly isomorphic.

Problem 2.23. The curve γ : R→ S2 with γ(t) = (cos(t), sin(t), 0) is smooth.
The same holds for the curve γ̃(t) = (cos(t), 0, sin(t)).

Problem 2.24 (Cartesian products of smooth maps are smooth). If the maps
F : M1 → M2 and G : N1 → N2 are smooth, then their cartesian product
(m,n) 7→ (F (m), G(n)) is a smooth map M1 × N1 → M2 × N2. (See also
Problem 2.19).

2.4.2 Index notation

It is instructive to look at equation (13) in a little more detail. If we write

φα(p) = (x1, . . . , xn) and φβ(p) = (x1, . . . , xn) (17)

for the coordinates of p ∈ M with respect to the charts (Uα, φα) and (Uβ , φβ),

then the transition function καβ = φβ ◦ φ−1
α maps (x1, . . . , xn) to (x1, . . . , xn).

For every µ = 1, . . . , n, we can therefore consider

xµ(x1, . . . , xn) (18)

as a smooth function of x1, . . . , xn, where it is understood that xµ and xµ

designate the same point p ∈M with respect to different coordinate systems.
In the same vein, the coordinate representation f ◦φ−1

α of f : M → R is often
written as

fα(x1, . . . , xn) := f ◦ φ−1
α (x1, . . . , xn), (19)

or even as f(x1, . . . , xn) if the context is clear. Similarly, we write

fβ(x1, . . . , xn) := f ◦ φ−1
β (x1, . . . , xn) (20)
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Figure 5: The points p ∈M , (x1, x2) ∈ φα(Uα) and (x1, x2) ∈ φβ(Uβ)

for the coordinate representation with respect to (Uβ , φβ). Combining (18), (19)
and (20), we find

fα(x1, . . . , xn) = fβ(x1(x1, . . . , xn), . . . , xn(x1, . . . , xn)). (21)

This is of course just a different guise of equation (13)! Indeed, xµ(x1, . . . , xn)
is the µth component of καβ(x1, . . . , xn), so equation (21) is just fα = fβ ◦ καβ
evaluated at the coordinate φα(p) = (x1, . . . , xn).

Applying the chain rule, we find that for every µ = 1, . . . , n, we have

∂

∂xµ
fα =

n∑
µ=1

(
∂xµ

∂xµ

)
∂

∂xµ
fβ . (22)

Here, the n×n-matrix J whose entry in row µ and column µ is Jµµ = ∂xµ

∂xµ is the
Jacobian matrix of the transition function καβ at the coordinates (x1, . . . xn).
Writing (22) as

∂

∂xµ
fα =

n∑
µ=1

Jµµ
∂

∂xµ
fβ , (23)

we see that the partial derivatives ∂µfα := ∂
∂xµ fα are a pointwise linear combi-

nations of the partial derivatives ∂µfβ .
Considering different coordinate representations of the same function can

even be useful for manifolds that can be covered with a single coordinate patch.
For example, on M = R2, we can describe a function f : M → R with respect
to the cartesian coordinates or polar coordinates.

Cartesian coordinates are given on the coordinate neighbourhood U1 = R2

by φ1(p) = (x, y), where x and y are the projections of the point p on the x and
y axis, respectively. Polar coordinates are given on U2 = R \ {(x, 0) ; x ≤ 0} by
φ2(p) = (r, θ), where r is the distance from p to the origin O and θ ∈ (−π, π) is
the angle between the line Op and the x-axis.

Note that the polar coordinates (r, θ) take the values r > 0 and −π < θ < π
for p ∈ U2, so φ2(U2) = (0,∞)× (−π, π). The transition function κ21 : (0,∞)×
(−π, π)→ R\{(x, 0) ; x ≤ 0} is of course the familiar formula for the coordinate
transformation from polar to Cartesian coordinates:

(x, y) = (r cos(θ), r sin(θ)) .
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Figure 6: The manifold M = R2, with Cartesian and polar coordinates

Problem 2.25. Calculate the Jacobian matrix Jµµ for the transformation from
polar coordinates (x1, x2) = (r, θ) to Cartesian coordinates (x1, x2) = (x, y).

a) Why is Jµµ invertible?

b) Calculate ∂
∂rf(r cos(θ), r sin(θ)) and ∂

∂θf(r cos(θ), r sin(θ)), and compare
with (23).

2.5 Complex manifolds

In the definition of a smooth manifold, we require that the transition functions
are smooth. A complex manifold is defined in the same way as a smooth man-
ifold, except that we now require the charts φα to be homeomorphisms from
Uα ⊆ M to an open subset of Cn, and we require the transition functions
καβ = φβ ◦ φ−1

α between open subsets of Cn to be holomorphic.
Since every holomorphic map between open subsets of Cn can be considered

as a smooth map between open subsets of R2n, every complex manifold of (com-
plex) dimension n can be considered as a smooth manifold of (real) dimension
2n. If M and N are complex manifolds, then a function F : M → N is called
holomorphic if its coordinate representations Fαβ are holomorphic. Since the
transition functions are holomorphic, this is independent of the choice of charts.

2.5.1 Complex projective space

The complex projective space CPn is the set of all rays in Cn+1, that is, the set
of all 1-dimensional complex linear subspaces of Cn+1 with the origin deleted.
If we denote the ray through a nonzero vector v ∈ Cn+1 by

[v] := {λv ; λ ∈ C×},

then we have CPn := {[v] ; v ∈ Cn+1 \ {0}}.

Remark 2.26. In quantum mechanics, pure states are usually described by
vectors in a Hilbert space. In a quantum system with n+ 1 degrees of freedom,
the relevant Hilbert space is Cn+1. Note that two nonzero vectors v, v′ ∈ Cn+1
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yield the same physical state if v′ = λv for some λ ∈ C×. Indeed, for any ob-

servable A = A† ∈Mn+1(C), the expectation values 〈v
′,Av′〉
〈v′,v′〉 and 〈v,Av〉〈v,v〉 coincide,

so there is no experiment that can tell the difference between v and v′. A pure
state is therefore properly described by a ray [v] through a nonzero vector v,
and the pure state space is CPn. In particular, the state space of a two-level
system (qubit) is described by CP1.

Complex projective space is a topological space, since it is the quotient of
the topological space Cn+1 \ {0} by the equivalence relation where v ∼ v′ if
v′ = λv for some λ ∈ C×. See example A.28 for more details. In example A.49,
we show that CPn is Hausdorff.

Proposition 2.27. The complex projective space CPn is a complex manifold of
(complex) dimension n.

Proof. A nonzero vector v = (v0, . . . , vn) in Cn+1 has at least one nonzero com-
ponent, say vα. If we define for every α = 0, . . . , n the coordinate neighbourhood

Uα = {[v] ∈ CPn ; vα 6= 0},

then the Uα cover CPn. We define the charts φα : Uα → Cn by

φα([(v0, . . . , vn)]) =

(
v0

vα
, . . . ,

vα−1

vα
,
vα+1

vα
, . . . ,

vn
vα

)
.

One can think of φα([v]) as the intersection of the ray [v] ⊆ Cn+1 with the
complex hyperplane {(z0, . . . , zn) ; zα = 1} ' Cn. Suppose that α > β. (The
case α < β is similar.) Then the transition function καβ is given by

καβ(z1, . . . , zn) =

(
z1

zβ
, . . . ,

zα−1

zβ
,

1

zβ
,
zα+1

zβ
, . . . ,

zβ−1

zβ
,
zβ+1

zβ
, . . . ,

zn
zβ

)
. (24)

This transition function is holomorphic in the n complex variables z1, . . . , zn.
Having shown that the transition functions καβ are holomorphic, it remains

to show that the chart φα : Uα → Cn is a homeomorphism. Let π : Cn+1\{0} →
CPn be the quotient map π(v) = [v]. We need to show that W ⊆ Cn is open
if and only if φ−1

α (W ) ⊆ Uα is open. By definition, the latter is the case if and
only if

π−1φ−1
α (W ) := {(λx1, . . . , λxα−1, λ, λxα, . . . , λxn) ;λ ∈ C×, ~x ∈W}

is open in Cn+1 \ {0}.
If π−1φ−1

α (W ) is open, then for every v ∈ π−1φ−1
α (W ) there is an open,

n + 1 dimensional ball Bv(r) inside π−1φ−1
α (W ) that is centered at v. Then

Bv/vα(r/|vα|) is an open ball inside π−1φ−1
α (W ) as well. Since it is centered

at a point with α coordinate 1, its intersection with the hyperplane xα = 1 in
Rn+1 is an open ball of dimension n that lies entirely within W .

Conversely, suppose that Bu(r) ⊆ Rn is an open ball around u ∈ W . Con-
sider W as a subset of the hyperplane zα = 1 in Cn+1. Then an open ball

22



around (u1, . . . , uα−1, 1, uα, . . . un) with radius r/
√

1 + (r + ‖u‖)2 is contained
entirely within π−1φ−1

α (W ). (Convince yourself of this with a picture of the
triangle with vertices 0, (0, . . . , 1, . . . , 0), and the point in Bu(r) that is furthest
from the origin.)

Problem 2.28. The above proof is somewhat lacking in detail. Check that the
transition functions are indeed given by (24). What is their domain φα(Uα∩Uβ)?

In particular, CP1 is a complex manifold of dimension 1. We show that as
a real manifold of dimension 2, it is diffeomorphic to the 2-sphere S2. With
respect to the two charts (U0, φ0) and (U1, φ1), a complex line [v0, v1] ∈ CP1

receives the coordinates φ0([v0, v1]) = v1/v0 ∈ C and φ1([v0, v1]) = v0/v1 ∈ C.
The transition function κ01 : C \ {0} → C \ {0} is therefore z 7→ 1/z.

If we identify z = x + iy ∈ C with (x, y) ∈ R2, then the transition function
z 7→ 1/z takes the form

(x, y) 7→ 1

x2 + y2
(x,−y) . (25)

This is reminiscent of the 2-dimensional sphere S2, which (recall Problem 2.11)
is covered by two coordinate patches with transition function

(x, y) 7→ 1

x2 + y2
(x, y) . (26)

To make this correspondence precise, we introduce on CP1 the anti-holomorphic
coordinates (Uα, φα) with φα([v0, v1]) = φα([v0, v1]). Since CP1 is covered by
the coordinate neighbourhoods (U0, φ0) and (U1, φ1) with transition function
κ0,1z = 1/z equal to (26), we infer that CP1 is diffeomorphic to S2.

Remark 2.29 (Riemann sphere). Using the chart φ0, we can identify z ∈ C
with the point [1, z] ∈ CP1. This way, we are able to describe all points [v0, v1] =
[1, v1/v0] ∈ CP1 except the single point [0, 1] ∈ CP1. It is reasonable to define
∞ := [0, 1], because limz→∞ φ−1

0 (z) = [0, 1] in CP1. Since CP1 is a complex
manifold, we can now define what it means for a function f : C ∪ {∞} → C to
be holomorphic at ∞. The picture of C ∪ {∞} as a complex manifold is often
called the Riemann sphere.

On compact complex manifolds, holomorphic functions are surprisingly rare.
To see this, we need some basic facts on holomorphic functions of several vari-
ables that are collected in Appendix C.

Theorem 2.30. Let M be a compact, connected, complex manifold. Then every
holomorphic function f : M → C is constant.

Proof. The absolute value |f | : M → R is a continuous function on a compact
topological space, so by Corollary A.58 there exists a point p0 ∈ M where |f |
achieves a maximal value |f(p0)|. Since f is continuous, the set S := {p ∈
M ; f(p) = f(p0)} is closed. We show that S is also open. Let p ∈ S, and let
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Uα ⊆ M be a connected coordinate neighbourhood of p. Then the coordinate
representation fα of f has maximal modulus at the coordinates φα(p) of p. By
the maximum modulus principle (Corollary C.6), the holomorphic function fα
is constant on its domain φα(Uα) ⊆ Cn. It follows that f is constant on Uα, so
that Uα ⊆ S. In particular, every p ∈ S has an open neighbourhood contained
in S, so that S ⊆ M is open as well as closed. Since M is connected (cf.
Definition A.9) and S is nonempty, we conclude that S = M .

Problem 2.31. The projection π : Cn+1\{0} → CPn with π(v) = [v] is smooth.

Problem 2.32. Let f : C \ {z1, . . . , zr} → C be a holomorphic function.

a) Then f extends to a continuous function

f̂ : CP1 \ {φ−1
0 (z1), . . . , φ−1

0 (zr)} → C

if and only if the limit f(∞) := limz→0 f(1/z) exists.

b) The resulting function f̂ : CP1\{φ−1
0 (z1), . . . φ−1

0 (zr)} → C is holomorphic
if and only if the function h : C \ {z1, . . . zr} → C with

h(z) :=

{
f(1/z) for |z| > 0

f(∞) for z = 0

is holomorphic at 0.

Problem 2.33. Let p(z) and q(z) be polynomials in z ∈ C which are not
identically zero. Then by the fundamental theorem of algebra, p(z)/q(z) is a
meromorphic function on C with finitely many poles and finitely many zeros.
Identify CP1 with the Riemann sphere C ∪ {∞} as in Remark 2.29, and show
that p(z)/q(z) extends to a holomorphic function CP1 → CP1.

Problem 2.34. Let SL(2,C) be the group of complex 2× 2 matrices of deter-
minant 1, and let A ∈ SL(2,C).

a) The expression [v] 7→ [Av] yields a well-defined map FA : CP1 → CP1,
which is trivial if and only if A = ±1.

b) The map FA : CP1 → CP1 is holomorphic.

c) For A,B ∈ SL(2,C), we have FAB = FA ◦ FB . In particular, every map
FA : CP1 → CP1 is invertible.

d) So FA : CP1 → CP1 is a holomorphic diffeomorphism.

Remark 2.35. In fact, one can show that every holomorphic diffeomorphism
of CP1 is of this form. The group PSL(2,C) := SL(2,C)/{±1} is the automor-
phism group of the complex manifold CP1.
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2.6 Embedded submanifolds in Rn

In linear algebra, a system of n− k independent linear equations

a1
1x

1 + . . . + a1
nx

n = c1

... + . . . +
... =

...

an−k1 x1 + . . . + an−kn xn = cn−k

defines an affine subspace of dimension k. This space of solutions can equiv-
alently be described as the preimage A−1({c}) of c ∈ Rn−k under the linear
map A : Rn → Rn−k obtained from the coefficients. The independence of the
equations translates to the (n− k)× n matrix A being surjective.

Proposition 2.36. For a (n− k)× n matrix A, the following are equivalent.

a) All (n− k) rows rµ := (aµ1 , . . . a
µ
n) are linearly independent.

b) There are (n− k) independent columns kν := (a1
ν , . . . a

n−k
ν )T .

c) The linear map A : Rn → Rn−k is surjective.

Proof. All three properties are conserved under pivot operations, because every
pivot operation on A can be expressed by left multiplication with an invertible
(n − k) × (n − k) matrix. Thus, we may as well assume that our matrix is in
reduced row echelon form, say

A =


1 a1

2 0 a1
4 a1

5 · · ·
0 0 1 a2

4 a2
5 · · ·

...
. . .

0 0 . . . 1 an−kn−1 an−kn

 .

For a matrix in row echelon form, all three properties are equivalent to the
appearance of at least one nonzero entry on the bottom row.

In applications, one is often interested in the space Σ ⊆ Rn of solutions for a
system of nonlinear equations. This will in general no longer be a vector space,
but we will show that under suitable nondegeneracy conditions, it will still be
a manifold of dimension k.

More precisely, let F 1, . . . , Fn−k be n−k smooth R-valued functions on Rn,
and let Σ be the set of solutions of

F 1(x1, . . . xn) = c1

... =
...

Fn−k(x1, . . . , xn) = cn−k .

Using the inverse function theorem, we will show that if the derivativeDpF : Rn →
Rn−k is surjective for every solution p = (x1, . . . , xn) of the above equations,
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Figure 7: Affine space of solutions for (n− k) linear equations

Figure 8: Manifold of solutions for (n− k) nonlinear equations

then the solution space Σ = F−1({c}) is a k-dimensional embedded submanifold
of Rn. A value c ∈ Rn−k with this property is called a regular value.

This yields a way of showing that a subset Σ ⊆ M is a manifold without
explicitly constructing charts. For instance, Sn ⊆ Rn+1 is a manifold because it
is the solution to the quadratic equation

(x0)2 + . . .+ (xn)2 = 1 ,

where c = 1 is a regular value because DpF = (2x0, . . . , 2xn) is surjective for
all points p = (x0, . . . , xn) satisfying (x0)2 + . . .+ (xn)2 = 1.

2.6.1 Embedded submanifolds

If Σ is a subset of Rn, then we can use the fact that Rn is a manifold to help
us prove that Σ is a manifold as well. More generally, consider a subset Σ of an
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n-dimensional manifold M .

Definition 2.37 (Embedded submanifolds). The subset Σ ⊆ M is called a k-
dimensional embedded submanifold of M if for every point p ∈ Σ, there exists a
coordinate chart (Uα, φα) around p in M such that

φα(Uα ∩ Σ) = φα(Uα) ∩ (Rk ⊕ {0}),

where Rk⊕{0} ⊆ Rk⊕Rn−k is a k-dimensional hyperplane in Rn. A chart with
this property is called a slice chart.

Figure 9: Slice chart

For example, an embedded 1-dimensional submanifold ` ⊆ R3 is locally
diffeomorphic to the straight line {(x, 0, 0) ; x ∈ R}. Around any point p ∈ R3,
the part of the line ` that lies inside the coordinate neighbourhood Uα ⊆ R3

around p is parameterised by x 7→ φ−1
α (x, 0, 0).

Problem 2.38. The meridian {(ξ, η, ζ) ∈ S2 ; η = 0} is a 1-dimensional em-
bedded submanifold of the sphere S2.

Problem 2.39. For any smooth function f : R2 → R, the graph

Γ = {(x, y, z) ∈ R3 ; z = f(x, y)}

is a 2-dimensional, embedded submanifold of R3. (Hint: show that φα : R3 → R3

with φα(x, y, z) = (x, y, z − f(x, y)) is a chart of R3.)

Problem 2.40. Show that S2 is an embedded submanifold of R3. (Hint:
show that (U001, φ001) with U001 = {(x, y, z ∈ R3 ; x2 + y2 < 1, z > 0)} and

φ001(x, y, z) = (x, y, z −
√

1− x2 − y2) is a slice chart around (0, 0, 1).)

Since the definition of an embedded submanifold says nothing about smooth-
ness of transition functions, it is not a priori clear that an embedded submani-
fold is a manifold. The following proposition shows that the name is nonetheless
justified.

Proposition 2.41. Every embedded submanifold Σ ⊆M is a smooth manifold.
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Proof. The idea is to define the charts (ψα, Vα) for Σ as restrictions of the charts
(φα, Uα) for M , so that smoothness of the transition functions on Σ follows from
smoothness of the transition functions for M .

More precisely, let k and n be the dimensions of Σ and M , respectively.
With Rn = Rk ⊕ Rn−k, let π : Rn → Rk be the linear projection π(x⊕ y) = x,
and let j : Rk ↪→ Rn be the inclusion of Rk into Rn.

Since Σ is an embedded submanifold, there exists a chart Uα ⊆ M around
p ∈ Σ such that φα(Uα∩Σ) = φα(Uα)∩(Rk⊕{0}). If we set Vα := Uα∩Σ, then
the restriction ψα := π ◦ φα|Vα : Vα → Rk is therefore injective. It is continuous
because φα and π are continuous, and it is a homeomorphism onto its image
because φ−1

α ◦ j : ψα(Vα)→ Vα is a continuous inverse.
The transition functions κΣ

αβ for Σ are given in terms of the transition func-

tions κMαβ for M by κΣ
αβ = π◦κMαβ◦j. Since the three maps on the right hand side

are smooth, κΣ
αβ is smooth as well, and we conclude that Σ is a manifold.

Embedded submanifolds behave well with respect to smooth maps. In par-
ticular, the canonical inclusion Σ ↪→M is always smooth.

Proposition 2.42. Let M and N be smooth manifolds, let Σ ⊆ M be an
embedded submanifold.

a) If F : M → N is smooth, then so is the restriction F |Σ : Σ→ N .

b) A map F : N → Σ is smooth if and only if it is smooth as a map into M .

Proof. Let Σ, M and N be of dimension k, n and l, respectively. Choose slice
coordinates x1, . . . , xk; y1, . . . , yn−k for Uα ⊆ M , so Σ ∩ Uα corresponds to the
locus yµ = 0. Let z1, . . . , zl be coordinates on Vβ ⊆ N .

For (a), note that if F : M → N admits the coordinate representation
Fαβ(x1, . . . , xk; y1, . . . , yn−k), then F |Σ : Σ→ N has coordinate representation

(x1, . . . , xk) 7→ (F |Σ)αβ(x1, . . . , xk; 0, . . . , 0).

If Fαβ is smooth, then so is (F |Σ)αβ .
For (b), note that a smooth function F : N → M with values in Σ takes

the local form Fβα(z1, . . . , zl) = (F 1
αβ(z), . . . , F kαβ(z); 0, . . . , 0), the smoothness

of which depends only on the first k entries.

Problem 2.43. Revisit Problem 2.12 using Proposition 2.42 and Problem 2.40.

2.6.2 Regular values and embedded submanifolds of Rn

In order to show that a subset Σ ⊆ Rn is a smooth manifold, it therefore suffices
to show that it is an embedded submanifold of Rn.

Let U ⊆ Rn, and let F : U → R(n−k) be a smooth map. A point c ∈ Rn−k is
called a regular value if for all p ∈ F−1({c}), the differential DpF : Rn → Rn−k
is surjective.
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Theorem 2.44 (Regular Level Sets). If c is a regular value of F : U → Rn−k,
then Σ := F−1({c}) is a closed, embedded submanifold of Rn of dimension k.

This result is based on the Inverse Function Theorem for smooth functions
φ : U → Rn from an open subset U ⊆ Rn to Rn.

Theorem 2.45 (Inverse Function Theorem). If Dpφ is invertible at p ∈ U ,
then there exist open neighbourhoods U0 ⊆ Rn of p and V0 ⊆ Rn of φ(p) such
that φ|U0

: U0 → V0 is a diffeomorphism.

In other words, if Dpφ is invertible, then (U0, φ) is a coordinate chart for Rn
around p. We prove the Inverse Function Theorem in Appendix B. Using the
inverse function theorem, we prove Theorem 2.44.

Proof of Theorem 2.44. Since F is continuous, the preimage F−1({c}) of the
closed set {c} is closed. To show that it is an embedded subanifold, we use the
fact that DpF : Rn → Rn−k is surjective at p ∈ Σ to construct a slice chart
φ : U0 → φ(U0) ⊆ Rn for Rn around the point p ∈ U0 ⊆ U .

By changing F to F̃ (x) := F (x)− c, we may as well assume that c = 0. To
see that φ is a slice chart, it then suffices to show that

F ◦ φ−1(x1, . . . , xk; y1, . . . , yn−k) = (y1, . . . , yn−k). (27)

Indeed, if the chart φ satisfies (27), then the preimage of c = 0 under the
coordinate representation F ◦ φ−1 is the hyperplane Rk ⊕ 0 ⊆ Rn.

It is always possible to choose coordinates

x1, . . . , xk ; y1, . . . , yn−k

on Rn in which the (n− k)× n matrix DpF takes the form

DpF =

(
∂Fµ

∂xν
,
∂Fµ

∂yµ

)
, (28)

where (∂F
µ

∂xν )µν is an (n − k) × k matrix and (∂F
µ

∂yµ )µµ is an (n − k) × (n − k)

matrix that is invertible. Indeed, since DpF : Rn → R(n−k) is surjective, there
are always n − k independent columns in (28), which we can put on the right
hand side by reshuffling the coordinates if necessary.

We split Rn = Rk ⊕ Rn−k using the above coordinates, and write x ⊕ y
instead of (x1, . . . , xk ; y1, . . . , yn−k). Define the smooth map φ : Rn → Rn by

φ(x, y) := x⊕ F (x, y).

Since

Dpφ =

(
1k 0
∂Fµ

∂xν
∂Fµ

∂yµ

)
has invertible right lower block, Dpφ is invertible. Indeed, since det(∂F

µ

∂yµ ) 6= 0,
we have

det(Dpφ) = det(1k) det

(
∂Fµ

∂yµ

)
6= 0
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as well. Applying the Inverse Function Theorem to φ, we conclude that there
exists an open neighbourhood U0 of p such that φ : U0 → φ(U0) ⊆ Rn is a dif-
feomorphism onto its image. In other words, (U0, φ0) is a chart for Rn around p.
Since φ ◦ φ−1(x⊕ y) = x⊕ F (φ−1(x⊕ y)) = x⊕ y, we have F ◦ φ−1(x⊕ y) = y
as required.

In the course of the proof, we found the following normal form for F , which
we record for future use.

Corollary 2.46. Let p ∈ Rn be a regular point for F : Rn ⊆ U → Rn−k. Then
there exist coordinates (x1, . . . , xk; y1, . . . , yn−k) in a neighbourhood of p in Rn
for which F has the coordinate representation

(x1, . . . , xk; y1, . . . , yn−k) 7→ (y1, . . . , yn−k) .

Moreover, we obtain the following characterization of embedded submani-
folds Σ ⊆ Rn as subsets which are locally given by solutions to (n− k) smooth
equations F ν(x1, . . . , xn) = cν .

Corollary 2.47. A subset Σ ⊆ Rn is an embedded submanifold of dimension k
if and only if for every p ∈ Σ, there exists an open neighbourhood U ⊆ Rn of p
and a smooth function F : Rn ⊇ U → Rn−k such that Σ ∩ U = F−1({c}) and c
is a regular value for F .

Proof. If a function F has these properties, then Σ∩U is an embedded submani-
fold by by Theorem 2.44. It follows that Σ is an embedded submanifold (why?).
Conversely, if Σ is an embedded submanifold, then every point p ∈ Σ has a slice
chart φα : Rn ⊇ Uα → Rk⊕Rn−k. Since φα(Uα ∩Σ) = φα(Uα)∩ (Rk⊕{0}), we
can take F : Uα → Rn−k to be the projection of φα on Rn−k. The differential
DpF is surjective because Dpφα is.

Problem 2.48. Show that the helix

x = cos(z), y = sin(z)

is a 1-dimensional, embedded submanifold of R3. Hint: show that (0, 0) is
a regular value for the smooth function F : R3 → R2 defined by F (x, y, z) =
(x− cos(z), y − sin(z)).

Problem 2.49. A torus in R3 with ‘large radius’ 5 and ‘small radius’ 2 is
described by the equation

(r − 5)2 + z2 = 4,

where r(x, y) =
√
x2 + y2 is smooth on R3 \ {(0, 0, z) ; z ∈ R}.

a) Show that 4 is a regular value of F (x, y, z) = (r − 5)2 + z2.

b) Conclude that the torus is an embedded submanifold of R3.
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Problem 2.50. The light cone in R4 is given by

L = {(t, x, y, z) ∈ R4 ; x2 + y2 + z2 = c2t2},

where c is the speed of light.

a) Prove that L\{(0, 0, 0, 0)} is an embedded submanifold of R4. (For exam-
ple by using the regular value theorem.)

b) Do you think L is an embedded submanifold? (No need for a proof, enough
to draw a picture.)

Problem 2.51. Let F : R2 → R be defined by F (x, y) = x3 + xy + y3. What
are the regular values of F?

Problem 2.52. A conic section Σa,b := C ∩Pa,b is the intersection of the cone

C := {(x, y, z) ∈ R3 ; x2 + y2 = z2}

with the plane
Pa,b = {(x, y, z) ∈ R3 ; z = ax+ b}.

Show that every conic section with b 6= 0 is an embedded submanifold of R3.
What is its dimension?

Problem 2.53 (Surface of revolution). Let H : R → R be a smooth function,
and let

Σ := {(x, y, z) ∈ R3 ; x2 + y2 = H(z)}

be the surface of revolution for the curve H(z) = x2.

a) Sketch the set Σ for H = z and H = z2. Which of these two do you think
is a submanifold of R3?

b) Calculate DpF for the function F : R3 → R defined by

F (x, y, z) := x2 + y2 −H(z) .

c) Show that Σ is a 2-dimensional, embedded submanifold of R3 if d
dzH(z) 6= 0

for all z ∈ R with H(z) = 0. Return to (a) and prove your guess.

Problem 2.54. If we consider the sphere S2 ⊆ R3 as the level set F−1({1})
of the smooth function F (x, y, z) = x2 + y2 + z2, then the proof of the Regular
Level Set Theorem yields slice charts around every point p ∈ S2.

a) Revisit the proof of Theorem 2.44, and determine these slice charts for
p = (1, 0, 0), p = (0, 1, 0) and p = (0, 0, 1).

b) Calculate the inverse of these charts.

c) The slice charts from a) are charts for R3. What are their restrictions to
charts for S2?

31



Problem 2.55 (Closed embedded submanifolds). Let Σ ⊆ R2 be the subset
given by Σ = {(t, sin 1/t) ; t > 0}.

a) Show that Σ is an embedded submanifold of R2.

b) Show that Σ is not closed.

c) Give a smooth function F : R2 ⊃ {(x, y) ∈ R2 ; x > 0} → R that has Σ as
a regular level set.

d) There do not exist smooth functions F : R2 → R that have Σ as a regular
level set.

e) Show that Σ ⊆ M is is a closed embedded submanifold if and only if for
every point p ∈ M , there exists a coordinate chart (Uα, φα) around p in
M such that

φα(Uα ∩ Σ) = φα(Uα) ∩ (Rk ⊕ {0}).

(Note that for ‘ordinary’ embedded submanifolds, one only requires this
for p ∈ Σ.)

Problem 2.56. Let p : Cn+1 → C be the polynomial

p(v1, . . . , vn+1) = (v1)3 + . . .+ (vn+1)3.

a) Show that if p(v) = 0, then p(λv) = 0 for all λ ∈ C. It follows that
Σ := {[v] ∈ CPn ; p(v) = 0} is well defined.

b) Show that Σ is an embedded submanifold of CPn.

(Hint: It suffices to show that Uα ∩ Σ is an embedded submanifold of Uα for a
collection of coordinate neighbourhoods that cover CPn.)

2.7 Lie groups

In both geometry and physics, the groups of symmetries that one encounters
are often Lie groups. A Lie group is a group G which is at the same time a
smooth manifold, and for which the multiplication (g, h) 7→ gh is a smooth map
µ : G × G → G. The inverse ι : G → G with ι(g) = g−1 is then automatically
smooth as well (cf. Problem 5.10).

An important example of a Lie group is the group G = GL(n,R) of invertible
n× n matrices. Since the determinant is a continuous function,

GL(n,R) := {g ∈M(n,R) ; det(g) 6= 0}

is an open subset of Mn(R), and hence a smooth manifold by Problem 2.18. The
matrix multiplication µ : M(n,R) ×M(n,R) → M(n,R) is smooth because it
is quadratic in each entry, so its restriction to the open submanifold Gl(n,R)×
Gl(n,R) is smooth as well.
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2.7.1 The Euclidean motion group

Both the orthogonal group O(n) and the Euclidean motion group E(n) are Lie
groups. We show that O(n) of is a Lie group of dimension dimension 1

2n(n−1),
and then use this to see that E(n) is a Lie group of dimension 1

2n(n+ 1).
To show that it is a Lie group, it suffices to show that O(n) is a smooth,

embedded submanifold ofM(n,R), as the multiplication µ : O(n)×O(n)→ O(n)
will then be automatically smooth by Proposition 2.42. (It is the restriction
of the smooth multiplication µ : Mn(R) ×Mn(R) → Mn(R) to an embedded
submanifold.)

To apply Theorem 2.6.2, identify the vector space M(n,R) of real n × n

matrices with Rn2

, and identify the vector space Sym(n,R) of symmetric n× n
matrices with R 1

2n(n+1). Then O(n) is the preimage of the identity 1n under

the map F : Rn2 → R 1
2n(n+1) defined by F (R) = RTR. Note that the derivative

at R is given by

DRF (X) :=
d

dε

∣∣∣
ε=0

F (R+ εX) = XTR+RTX.

To show that 1n is a regular value of F , we need to show that DRF is surjective
for all R ∈ O(n). Indeed, since RT = R−1 for an orthogonal matrix R, we
have DR(RX) = XT + X, so the image of DR is the entire space Sym(n,R)
of symmetric n × n matrices. By Theorem 2.6.2, O(n) is a closed, embedded
submanifold of M(n,R) of dimension k = n2 − 1

2n(n+ 1) = 1
2n(n− 1).

Problem 2.57. Show that

Sl(2,R) := {g ∈M(2,R) ; det(g) = 1}

is a smooth manifold of dimension 3. Hint: consider the determinant as a
smooth function from R4 to R, and show that 1 is a regular value of

det

(
x y
z w

)
= xw − yz.

Recall from Theorem 1.3 that every isometry can be decomposed in an or-
thogonal transformation R ∈ O(n) and a translation Tv over a vector v ∈ Rn,
yielding a bijection O(n) × Rn ' E(n). Since O(n) is a manifold of dimension
1
2n(n − 1) and Rn is a manifold of dimension n, their product is a manifold of
dimension 1

2n(n− 1) + n = 1
2n(n+ 1), cf. Problem 2.19.

Note that concatenation of the isometries x 7→ Rx+ v and x 7→ R′x+ v′ is
the isometry x 7→ R′′x + v′′ with R′′ = R′R and v′′ = R′v + v′. If we identify
E(n) with O(n)× Rn, the multiplication is therefore given by

(R′, v′) · (R, v) = (R′R,R′v + v′).

Since O(n)×Rn is an embedded submanifold of Mn(R)×Rn (why?), and since
the multiplication is the restriction of the map (Mn(R)×Rn)×(Mn(R)×Rn)→
(Mn(R) × Rn) which is at most quadratic in every entry, the multiplication is
smooth and E(n) is a Lie group.
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Problem 2.58. Show that the group of affine, area-preserving transformations
of R2 is a Lie group of dimension 5.

2.7.2 The Poincaré group

To prove that the Poincaré group P is a Lie group of dimension 10, it suffices
to prove that O(3, 1) is a Lie group of dimension 6. Indeed, by Theorem 1.10
we have a bijection P ' O(3, 1) × R4, so we can consider P as a manifold of
dimension 6 + 4 = 10. The multiplication on this product is smooth by an
argument similar to the one in §(2.7.1).

The proof that O(3, 1) is a Lie group is analogous to the proof for O(n). We
realize O(3, 1) as the level set F−1({H}) for the smooth function

F : M(4,R)→ Sym(4,R), F (Λ) = ΛTHΛ,

with M(4,R) ' R16 and Sym(4,R) ' R10. To see that H is a regular value, we
need to show that for all Λ with ΛTHΛ = H, the Jacobian

DΛF (X) =
d

dt

∣∣∣
t=0

F (Λ + tX) = XTHΛ + ΛTHX

is surjective as a map from M(4,R) to the symmetric matrices Sym(4,R). One
readily checks that for any Y T = Y ∈ Sym(4,R), the element X = 1

2ΛHY does
the trick, DΛF (X) = Y . By the Regular Level Set Theorem 2.44, we conclude
that O(3, 1) is an embedded submanifold of M(4,R) of dimension 16− 10 = 6.
It is a Lie group because the multiplication is the restriction of a smooth map
µ : M(4,R)×M(4,R)→M(4,R).

Problem 2.59. A function f : RN → R is homogeneous of degree d if

f(λv) = λdf(v)

for all v ∈ RN and for all λ > 0.

a) Show that if f is homogeneous of degree d > 0, then every nonzero c ∈ R
is a regular value.

b) Show that the special linear group Sl(n,R) := {g ∈M(n,R) ; det(g) = 1}
is a Lie group. What is its dimension?

c) The group of affine transformations of Rn that preserve both volume and
orientation is generated by Sl(n,R), together with the translations Tv(x) =
x+ v. Show that this is a Lie group. What is its dimension?
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3 Tangent bundles for embedded submanifolds

Using the definition of a manifold in terms of coordinate patches, we defined
the notion of a smooth map F : M → N . In order to do calculus on manifolds,
we will also need to define the derivative of F . To handle these in a coordinate-
invariant way, we will need tangent vectors, tangent bundles and vector fields.

Before giving the definitions of these objects for general manifolds M , we first
look at the easier case of embedded submanifolds Σ ⊆ Rn. Here we can make
use of the linear structure of the surrounding space Rn, which is not available
in the general case. This is why the current section is rather shorter than the
next one.

3.1 Tangent vectors

Let I ⊆ R be an open interval containing zero. A smooth curve in M through
p ∈ M is a smooth function γ : R ⊇ I → M such that γ(0) = p. For embedded
submanifolds Σ ⊆ Rn, we can define tangent vectors as follows.

Definition 3.1 (TpΣ, embedded case). Let Σ ⊆ Rn be an embedded subman-
ifold. A vector vp ∈ Rn is called a tangent vector to Σ at p if there exists a
smooth curve γ : R ⊇ I → Σ through p such that

vp = γ̇(0) = lim
h→0

γ(h)− γ(0)

h
. (29)

The set TpΣ ⊆ Rn of tangent vectors is called the tangent space of Σ at p.

Remark 3.2. Note that by subtracting γ(0) ∈ Σ from γ(h) ∈ Σ, we are mak-
ing essential use of the fact that Σ lies inside Rn. For general manifolds (not
embedded in Rn), we will need a different definition.

3.2 Tangent bundles and vector fields

For embedded submanifolds Σ ⊆ Rn, we can define the tangent bundle as follows.

Definition 3.3 (TΣ, embedded case). The tangent bundle TΣ ⊆ Rn × Rn is
defined as

TΣ = {(p, v) ∈ Rn × Rn ; p ∈ Σ and v ∈ TpΣ}.
The canonical projection is the map π : TΣ→ Σ with π(p, v) = p.

If we identify (p, v) ∈ TΣ with v ∈ TpΣ, we can consider TΣ =
⋃
p∈Σ TpΣ

as the disjoint union of the tangent spaces TpΣ. Note that every tangent space
TpΣ is a fibre of the canonical projection, TpΣ = π−1({p}).

If Σ ⊆ Rn arises as the preimage of a regular value, then the tangent bundle
TΣ admits the following useful description.

Proposition 3.4. Let Σ ⊆ Rn be an embedded submanifold that arises as the
preimage under F : Rn ⊇ U → Rn−k of a regular value c. Then

TΣ = {(p, v) ∈ U × Rn ; F (p) = c and DpF (v) = 0}. (30)
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Proof. Suppose that (p, v) is in TΣ. Then there exists a curve γ in Σ through
p with tangent vector v ∈ TpΣ. Then since F (γ(t)) = c, we have DpF (v) =
d
dt |0F (γ(t)) = 0. Conversely, suppose that DpF (v) = 0. To show that v is
a tangent vector at p, we exhibit a smooth curve γ in Σ through p such that
γ̇(0) = v. Choose a slice chart (φα, Uα) around p, and define Fα := F ◦ φ−1

α

and vα := Dpφα(v). Since F = Fα ◦ φα, the chain rule yields Dφα(p)Fα(vα) =

0. Since φα(Uα ∩ Σ) = φα(Uα) ∩ (Rk × {0}) is an open subset of the linear
subspace Rk ⊆ Rn, it contains the straight line segment γα(t) = φα(p) + tvα for
t sufficiently close to 0. It follows that γ(t) = φ−1

α ◦ γα(t) is a smooth curve in
Σ with tangent vector v.

Proposition 3.5. Let Σ ⊆ Rn be an embedded submanifold. Then also the
tangent bundle TΣ ⊆ Rn × Rn is an embedded submanifold, and the canonical
projection π : TΣ→ Σ is a smooth map.

Proof. By Corollary 2.47, every embedded submanifold Σ ⊆ Rn is locally given
by the preimage under F : Rn ⊇ U → Rn−k of a regular value c ∈ Rn−k. It
follows that every p ∈ Σ admits a neighbourhood U ⊆ Rn such that T (Σ ∩ U) =
π−1(Σ ∩ U) is given by (30). In particular, it is the preimage of (c, 0) under
the smooth map DF : U × Rn → Rn−k × Rn−k defined by (p, v) 7→ DpF (v).
Since (c, 0) is a regular value for this map (why?), T (Σ ∩ U) = (DF )−1(c, 0) is
an embedded submanifold. Since TΣ is covered by the embedded submanifolds
T (Σ ∩ U), it is an embedded submanifold itself. The canonical projection is
smooth because it is the restriction to TΣ ⊆ Rn × Rn of the smooth map
Rn × Rn → Rn which projects on the first factor.

Remark 3.6. Note that TRn = Rn×Rn. So if Σ is an embedded submanifold
of Rn, the TΣ is an embedded submanifold of TRn.

This description of the tangent space is often very explicit. For example,
consider the 2-sphere S2

r of radius r, which is an embedded submanifold of R3.
It is the level set of the function F : R3 → R with F (x, y, z) = x2 + y2 + z2 at
the regular value r2 > 0. Since DFp = (2x, 2y, 2z), we have

TS2
r = {(~r,~v) ∈ R3 × R3 ; ~r ∈ S2

r and ~r · ~v = 0}.

Definition 3.7. A vector field on an embedded submanifold Σ ⊆ Rn is a
smooth map v : Σ→ TΣ with π ◦ v = idΣ. We denote the space of vector fields
by Vec(M).

A vector field assigns to every point p ∈ Σ a tangent vector vp in the tangent
space TpΣ at the point p.

Problem 3.8. If c is a regular value of the smooth function f : Rn → R, then
the tangent space TΣ of Σ := f−1({c}) can be identified with

TΣ ' {(x, v) ∈ Rn × Rn ; x ∈ Σ and v · ∇xf = 0}.
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Figure 10: The tangent space (left) and a vector field (right) on the sphere.

Problem 3.9. Describe the tangent space of the ellipsoid

{(x, y, z) ∈ R3 ; (x/a)2 + (y/b)2 + (z/c)2 = 1}

with a, b, c > 0 as an embedded submanifold of R3 × R3.

Problem 3.10. Let c be a regular value of the smooth function f : Rn → R,
and let Σ = f−1({c}). Then the space Vec(Σ) of vector fields can be identified
with

Vec(Σ) ' {v : Σ→ Rn ; v is smooth and v(x) · ∇xf = 0}.

Problem 3.11. Describe the vector fields on the ellipsoid

Σabc := {(x, y, z) ∈ R3 ; (x/a)2 + (y/b)2 + (z/c)2 = 1}

with a, b, c > 0 in terms of smooth maps from Σabc to R3.

Problem 3.12. For every ~Ω ∈ R3, the function ṽΩ(~x) := (~x, ~Ω × ~x) yields a
vector field on S2.

Problem 3.13. Let Σ be an embedded submanifold of Rn.

a) Show that Vec(Σ) is a vector space.

b) If the dimension of Σ is at least 1, then Vec(Σ) is an infinite dimensional
vector space.
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4 Tangent bundles for smooth manifolds

For two smooth manifolds M and N , we have defined what it means for a map
F : M → N to be differentiable. We have not yet defined its derivative. In order
to do this, we will need tangent vectors and tangent bundles.

To define tangent vectors on embedded manifolds Σ ⊆ Rn, we made essential
use of the linear structure of the envelopping space Rn, which is unfortunately
not available for a general manifold M . There are (at least) three equivalent
ways to define tangent vectors – all of which have their advantages and disad-
vantages. The definition that we will use is based on smooth curves.

4.1 Tangent vectors and the tangent space TpM

Let M be a smooth manifold of dimension n, and let γ : R ⊇ I → M be a
smooth curve through p ∈M . With respect to a chart (Uα, φα) that contains p,
the coordinate representation γα = φα ◦ γ is defined on an open neighbourhood
of 0 ∈ I ⊆ R, and takes values in Rn. Since Rn is a vector space, we can define

vµα := γ̇µα(0) = lim
h→0

γµα(h)− γµα(0)

h
. (31)

This expression depends on the chart in a controlled way. Since γβ = καβ ◦ γα,
we infer from the chain rule that γ̇β(0) depends linearly on γ̇α(0),

γ̇β(0) =
(
Dφα(p)καβ

)
γ̇α(0). (32)

Explicitly, if we define vµα := γ̇µα(0) and vµβ := γ̇µβ (0), and if we let Jµµ = ∂xµ

∂xµ be

the Jacobian matrix of καβ at φα(p) = (x1, . . . , xn), then the above equation
has coordinate expression

vµβ =

n∑
µ=1

Jµµ v
µ
α. (33)

This has the following simple, but important, consequence.

Proposition 4.1. Suppose that two smooth curves γ and l through p ∈ M
satisfy γ̇α(0) = l̇α(0) with respect to a chart (Uα, φα) around p. Then they
satisfy γ̇β(0) = l̇β(0) with respect to any other chart (Uβ , φβ) as well.

Proof. If vµα := γ̇µα(0) is equal to wµα := l̇µα(0), then

vµβ := γ̇µβ (0) =

n∑
µ=1

Jµµ v
µ
α =

n∑
µ=1

Jµµw
µ
α = l̇ µβ (0) =: wµβ .

We can therefore define an equivalence relation on curves through p as fol-
lows. Two curves γ and l are equivalent, γ ∼p l, if there exists a chart (Uα, φα)

around p in which the first order derivatives vµα = γ̇µα(0) and wµα = l̇µα(0) agree.
By the above proposition, this will then automatically hold in any other chart
around p as well!
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Definition 4.2 (Tangent space (general case)). A tangent vector at p ∈ M is
an equivalence class vp = [γ] of curves through p with respect to the relation ∼p.
The set TpM of tangent vectors is called the tangent space of M at p.

For a tangent vector vp ∈ TpM , we call (v1
α, . . . v

n
α) ∈ Rn the coordinate

expression of vp with respect to the chart (Uα, φα). If we fix the chart, then vp
is uniquely determined by its coordinates (v1

α, . . . v
n
α) Conversely, every n-tuple

(v1
α, . . . v

n
α) ∈ Rn gives rise to a unique tangent vector vp.

Proposition 4.3. The map

φα∗ : TpM → Rn, φα∗(vp) = (v1
α, . . . , v

n
α)

is a bijection.

Proof. Injectivity follows directly from definition 4.2 (why?). To see that φα∗ is
surjective, note that (v1

α, . . . , v
n
α) is the derivative at zero of the curve γα(t) =

φα(p) + (tv1
α, . . . , tv

n
α) in Rn through φα(p). To construct a vector vp = [γ] ∈

TpM with φα∗(vp) = (v1
α, . . . , v

n
α), we simply take the curve in M through p

defined by γ(t) = φ−1
α ◦ γα(t). Its domain is the open interval γ−1

α (φα(Uα))
in R.

This allows us to consider TpM as a vector space. To define the sum of
vp ∈ TpM and wp ∈ TpM , we simply add the corresponding coordinates
in Rn and define vp + wp ∈ TpM to be the unique vector with coordinates
(v1
α + w1

α, . . . , v
n
α + wnα). Similarly, we define λvp ∈ TpM to be the unique tan-

gent vector with coordinates (λv1
α, . . . , λv

n
α).

Although the addition and scalar multiplication on TpM are defined using
the chart (Uα, φα), the resulting vector space structure is in fact independent
of the chart. Indeed, equation (32) shows that the bijections φα∗ : TpM → Rn
and φβ∗ : TpM → Rn are related by the linear map Dκαβ(φα(p)) : Rn → Rn.
Since the two bijections differ by a linear map, they define the same vector space
structure on TpM .

Problem 4.4. If the above description is not sufficiently rigorous to you (I am
not calling anyone a nitpicker), one can proceed as follows. Define

v +α w := φ−1
α∗
(
φα∗(v) + φα∗(w)

)
and λ ·α v := φ−1

α∗
(
λ · φα∗(v)

)
.

Prove that these operations make TpM into a vector space. Prove that if we
analogously define v+βw := φ−1

β∗ (φβ∗(v)+φβ∗(w)) and λ ·β v := φ−1
β∗ (λ ·φβ∗(v)),

then v +α w = v +β w and λ ·α v = λ ·β v.

Problem 4.5. Prove that if vp = [γ], then λvp = [γ(λ · )], where γ(λ · ) denotes
the curve t 7→ γ(λt).

Problem 4.6. We saw that S2 can be covered by two coordinate charts (Uα, φα)
and (Uβ , φβ) with Uα = S2 \ {n}, Uβ = S2 \ {s}, and transition function
καβ(x, y) = 1

x2+y2 (x, y).
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(a) Give the relation between (v1
α, v

2
α) and (v1

β , v
2
β).

(b) If (v1
α, v

2
α) is constant in p, what happens to (v1

β , v
2
β) as p approaches

n = (0, 0, 1)? And as p approaches s = (0, 0,−1)?

Remark 4.7. For M = Rn, there exists a canonical global chart φ : Rn → Rn
which is simply the identity. We will use this chart to identify TpRn with Rn
without further comment.

Definition 4.8. For a smooth curve γ : R ⊇ I → M , we define the tangent
vector γ̇(t0) at the point p = γ(t0) as the equivalence class modulo ∼p of the
curve t 7→ γ(t+ t0).

We thus have two different ways of looking at tangent vectors. We can
describe them coordinate-invariantly as equivalence classes vp = [γ] of curves,
and upon choosing coordinates (Uα, φα), we can describe them by an n-tuple of
real numbers (v1

α, . . . , v
n
α). If we use different coordinates (Uβ , φβ) to describe

the same vector vp, then the coordinates change according to formula (33). This
is called contravariant transformation behaviour.

4.2 Derivations

Here is a third, more algebraic way of viewing tangent vectors. Recall from
Prop. 2.8 that the space C∞(M) of smooth functions f : M → R is an algebra.

Definition 4.9 (Derivations at a point). A derivation of C∞(M) at the point
p ∈M is a linear map Dp : C∞(M)→ R that satisfies the Leibniz rule

Dp(fg) = Dp(f)g(p) + f(p)Dp(g). (34)

We denote by Derp(C
∞(M)) the set of derivations of C∞(M) at p.

The derivations Derp(C
∞(M)) constitute a vector space. That is, for any

two derivations Dp and D′p and any α, β ∈ R, the linear combination αDp+βD′p
is again a derivation.

Problem 4.10. Prove that Derp(C
∞(M)) is a vector space.

From a smooth curve γ : R ⊇ I →M through p ∈M , we obtain a derivation
Dγ
p : C∞(M)→ R by differentiating along γ,

Dγ
p (f) :=

d

dt

∣∣∣
0
f(γ(t)). (35)

Proposition 4.11. The map Dγ
p : C∞(M)→ R is a derivation.

Proof. The map Dγ
p is linear because differentiation is linear:

Dγ
p (αf + βg) =

d

dt

∣∣∣
0

(
(αf + βg)(γ(t))

)
= α

d

dt

∣∣∣
0
f(γ(t)) + β

d

dt

∣∣∣
0
g(γ(t)) = αDγ

p (f) + βDγ
p (g).
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The Leibniz rule for Dγ
p comes from the product rule for differentiation,

Dγ
p (fg) =

d

dt

∣∣∣
0
f(γ(t)) · g(γ(t))

=

(
d

dt

∣∣∣
0
f(γ(t))

)
g(p) + f(p)

(
d

dt

∣∣∣
0

(
g(γ(t))

)
= Dγ

p (f)g(p) + f(p)Dγ
p (g).

To express Dγ
p in local coordinates, note that

f ◦ γ = (f ◦ φ−1
α ) ◦ (φα ◦ γ) = fα ◦ γα

for t sufficiently close to zero. Since γ̇µα = vµα, we have

Dγ
p (f) =

d

dt

∣∣∣
0
fα
(
γ1
α(t), . . . , γnα(t)

)
=

n∑
µ=1

vµα
∂

∂xµ
fα(x1, . . . , xn), (36)

where (x1, . . . , xn) are the coordinates of p with respect to (Uα, φα). In partic-
ular, the derivation Dγ

p depends on the curve γ only through its tangent vector
vp = [γ]! We conclude that a tangent vector vp = [γ] ∈ TpM gives rise to the
derivation

Dv
p(f) =

n∑
µ=1

vµα
∂

∂xµ
fα(x1, . . . , xn). (37)

The following theorem allows us to identify tangent vectors at p with deriva-
tions.

Theorem 4.12 (Tangent vectors as derivations). The map TpM → Derp(C
∞(M))

defined by vp 7→ Dv
p is a linear isomorphism of vector spaces.

Proof. The proof uses the Hausdorff property of M in an essential way. We will
come back to the proof of this theorem in Section 7.

Problem 4.13 (Hadamard lemma). Let f : Rn → R be a smooth function.
Show that f can be written as

f(x) = f(p) +

n∑
µ=1

(xµ − pµ)ρµ(x)

for smooth functions ρµ : Rn → R with ρµ(p) = ∂
∂xµ f(p).

(Hint: evaluate h(1) = h(0)+
∫ 1

0
h′(t)dt for the function h(t) := f(p+ t(x−p)).)

Problem 4.14. Prove that the vector space Derp(C
∞(Rn)) of derivations at

p ∈ Rn is isomorphic to TpRn.

a) Show that every derivation satisfies Dp(1) = 0. Conclude that Dp(f) = 0
for any constant function f .
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b) Using Problem 4.13 or otherwise, show that every derivationDp of C∞(Rn)

at p is given by Dp(f) =
∑n
µ=1 v

µ ∂f
∂xµ (p) for certain constants vµ ∈ R.

c) Conclude that TpRn ' Derp(C
∞(Rn)).

Problem 4.15. Let A be a commutative algebra with unit over a field K, and
let I ⊆ A be an ideal.

a) The K-vector space A/I is an A-module with action A× (A/I)→ (A/I)
given by a · [b] = [ab].

b) A derivation at I is a linear map D : A → A/I that satisfies the Leibniz
rule D(ab) = aD(b) + bD(a). Show that the set DerI(A) of derivations at
I is a vector space over K.

c) Let K = R, let A = C∞(M), and let Ip ⊆ C∞(M) be the set of smooth
functions that vanish at p ∈M . Show that Ip is an ideal. Give an isomor-
phism between A/Ip and the A-module R with action A× R→ R given
by f · x = f(p)x. Identify derivations of C∞(M) at Ip with derivations of
C∞(M) at p ∈M in the sense of definition 4.9.

d) Let A = C[z1, . . . , zn] be the algebra over K = C of complex polynomi-
als in n variables. Show that the set I0 of polynomials that vanish at
(0, . . . , 0) ∈ Cn is an ideal. Give an isomorphism between A/I0 and the
A-module C with action A× C→ C defined by p · z = p(0)z. Prove that
DerI0(C[z1, . . . , zn]) is an n-dimensional complex vector space with basis
Di(p) := [ d

dzi
p].

4.3 Einstein summation convention

Since we will have to write down quite a lot of expressions like (37), we introduce
some notational conventions to make them a bit shorter. First of all, we will
often denote the derivation Dv

p simply by vp,

vp(f) =

n∑
µ=1

vµα
∂

∂xµ
fα(x1, . . . , xn). (38)

Secondly, denote by ∂µ ∈ TpM the tangent vector whose coordinates with
respect to the chart (Uα, φα) are all zero, except for the µ-coordinate, which is
one. Since the vectors ∂µ with µ = 1, . . . , n correspond to the standard basis in
Rn, they constitute a basis of TpM called the coordinate basis. The reason for
denoting these vectors by ∂µ is that the corresponding derivation is simply the
partial derivative in the xµ-direction,

∂µ(f) =
∂

∂xµ
fα(x1, . . . , xn).
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With this notation, (38) reduces to

vp(f) =

n∑
µ=1

vµα∂µ(f). (39)

Finally, we use the Einstein summation convention that repeated indices are
summed if one is a subscript and the other a superscript. This turns equation
(39) for the derivation into the (rather shorter) expression

vp(f) = vµα∂µ(f) .

This corresponds to
vp = vµα∂µ (40)

at the level of tangent vectors.

4.4 Three different ways to view a tangent vector

Summarizing, we now have three different ways to describe a tangent vector
vp ∈ TpM for a manifold M .

(1) A tangent vector vp ∈ TpM is, by definition, an equivalence class vp = [γ]
of smooth curves through p. We can think of vp as the derivative of γ(t)
at t = 0.

(2) With respect to a chart (Uα, φα) around p, every tangent vector vp ∈ TpM
is of the form

vp = vµα∂µ

for an n-vector (v1
α, . . . , v

n
α). If vp = vµβ∂µ with respect to a different chart

(Uβ , φβ), then the coefficients vµβ are related to vµα by

vµβ =
∂xµ

∂xµ
vµα,

where xµ(x1, . . . xn) is the transition function καβ between the charts.

(3) A tangent vector vp ∈ TpM can be viewed as a derivation of C∞(M) at
p ∈ M , that is, a linear map vp : C∞(M) → R that satisfies the Leibniz
rule vp(fg) = vp(f)g(p) + f(p)vp(g).

Each of these descriptions has its advantages and disadvantages. We have chosen
description (1) as the definition of a tangent vector and derived the other two,
but in the literature one also encounters definitions based on (2) and (3).

4.5 The derivative of a smooth function

Now that we have defined tangent vectors, we can finally define the derivative
of a smooth function F : M → N . In the context of differential geometry, the
derivative is often called the pushforward. If F maps p ∈M to F (p) ∈ N , then
the pushforward is a linear map F∗ : TpM → TF (p)N .
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Definition 4.16 (Pushforward). The pushforward of a smooth map F : M → N
at p ∈M is the linear map

F∗ : TpM → TF (p)N

that takes vp = [γ] to F∗(vp) = [F ◦ γ].

To see that F∗ is linear and well defined, express vp = [γ] in coordinates
(Uα, φα) around p ∈ M as vp = vµα∂µ. Similarly, express wF (p) in coordinates
(Vβ , ψβ) around F (p) ∈ N as wF (p) = wνβ∂ν . Since (F ◦ γ)β = Fαβ ◦ γα, the
chain rule yields

wνβ = d
dt

∣∣
0

(
F ναβ(γ1

α(t), . . . , γnα(t))
)

= ∂µF
ν
αβ

(
x1(p), . . . , xn(p)

)
vµα, (41)

where (γ1
α(0), . . . , γnα(0)) = (x1(p), . . . , xn(p)) are the coordinates of the point p.

In particular, wνβ depends on γ only through the coordinates vµα, and it does
so in a linear fashion. Since the coordinate expression (41) for the derivative is
quite useful, we record it in a proposition.

Proposition 4.17 (Pushforward and Jacobian). With respect to the coordinate
basis ∂µ of TpM and ∂ν of TF (p)N , the linear map F∗ : TpM → TF (p)N is
represented by the Jacobian matrix

Jνµ = ∂µF
ν
αβ(x1(p), . . . , xn(p)).

Remark 4.18 (Pushforward in Rn). For a smooth map F : Rn → Rm, we can
canonically identify TpRn with Rn and TF (p)Rm with Rm. In this case (and in
this case only!), we will identify the pushforward F∗ : TpRn → TF (p)Rm with
the total derivative DpF : Rn → Rm.

The pushforward enjoys the following familiar properties.

Proposition 4.19 (Chain rule). Let M and N be smooth manifolds, and let
F : M → N be a smooth map.

a) The chain rule holds. If F : M → N and G : L → M are smooth maps,
then

(F ◦G)∗ = F∗ ◦G∗.
More precisely, the linear map (F ◦G)∗ : TpL→ TF (G(p))N is the concate-
nation of G∗ : TpL→ TG(p)M and F∗ : TG(p)M → TF (G(p))N .

b) The pushforward of the identity is the identity, IdM ∗ = IdTpM .

c) The pushforward of a diffeomorphism φ : M → N is an isomorphism of
vector spaces φ∗ : TpM → Tφ(p)N .

Proof. The chain rule (a) immediately follows from (F ◦G)∗([γ]) = [(F ◦G) ◦ γ]
and F∗(G∗[γ]) = [F ◦ (G ◦ γ)] for [γ] ∈ TpM . For part (b), simply note that
Id∗([γ]) = [Id ◦ γ] = [γ]. From (a) and (b), we have (φ−1)∗ ◦ φ∗ = IdTpM and
φ∗ ◦ (φ−1)∗ = IdTφ(p)M , so φ∗ : TpM → Tφ(p)M is a linear isomorphism with

inverse (φ∗)
−1 = (φ−1)∗.
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Definition 4.20 (Pullback). The pullback along F : M → N of a function
f ∈ C∞(N) is the function F ∗f ∈ C∞(M) defined by F ∗f := f ◦ F .

This is compatible with the pushforward of vector fields in the sense that

v(F ∗f) = F∗v(f) (42)

for all v ∈ TpM , cf. Problem 4.24.

Problem 4.21. Let γ : R ⊇ I →M be a smooth curve. Then the pushforward
γ∗(∂t) of ∂t ∈ Tt0R is the tangent vector γ̇(t0) ∈ Tγ(t0)M of Definition 4.8.

Problem 4.22. Let γ : R→ S1 be the smooth curve γ(t) = (cos(t), sin(t)), and
let Rθ : S1 → S1 be the rotation over angle θ,

Rθ

(
x
y

)
=

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
x
y

)
.

Show that Rθ∗γ̇(t0) = γ̇(t0 − θ).

Problem 4.23. Let χ ∈ R, and let F : R2 → R2 be the smooth function
F (x, y) = (cosh(χ)x+ sinh(χ)y, sinh(χ)x+ cosh(χ)y).

a) Calculate the pullback F ∗f of the functions f(x, y) = x and for f(x, y) = y.

b) Calculate the pushforward F∗v of the vectors v = ∂x and v = ∂y.

Problem 4.24 (Push forward, pull back). Let F : M → N be a smooth map.

a) The pullback F ∗ : C∞(N)→ C∞(M) is an algebra homomorphism.

b) For every Dp ∈ Derp(C
∞(M)), the pushforward F∗Dp := Dp ◦ F ∗ is an

element of DerF (p)(C
∞(N)).

c) The pushforward F∗ : Derp(C
∞(M))→ DerF (p)(C

∞(N)) of derivations is
compatible with the pushforward F∗ : TpM → TF (p)N of tangent vectors
in the sense of (42).

4.6 The tangent bundle

For a smooth manifold M , the tangent space TpM is the set of tangent vectors
vp at the point p ∈M . The tangent bundle TM is the set of all tangent vectors
v, regardless where they are based. In other words, TM is the disjoint union of
the sets TpM , where p runs over the entire manifold M ,

TM :=
⊔
p∈M

TpM. (43)

ForM = Rn, we have a bijective correspondence TRn ' Rn×Rn. Indeed, Rn
has a canonical global chart, so we can identify every tangent vector vx ∈ TRn
with a unique point (x, v) ∈ Rn×Rn such that vx = vµ∂µ. Similarly, for an open
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subset U ⊆ Rn, we have a bijective correspondence TU ' U×Rn. This allows us
to consider TU as a smooth manifold, where the bijective correspondence TU '
U × Rn serves as a (global) chart for TU . Using the following lemma, we will
define a smooth manifold structure on TM for arbitrary smooth manifolds M .

Lemma 4.25. If U ⊆ Rn and V ⊆ Rm are open subsets, and F : U → V is a
smooth map, then the pushforward F∗ : TU → TV is a smooth map as well.

Proof. If we identify TU ' U × Rn and TV ' V × Rm, then the coordinate
representation of F∗ : TU → TV is the map

(x1, . . . , xn; v1, . . . , vn) 7→ (F 1(x), . . . , Fm(x); ∂µF
1(x)vµ, . . . ∂µF

m(x)vµ),

which is smooth in xµ because F is smooth, and in vµ because the expression
is linear in v.

Theorem 4.26. If M is a smooth manifold of dimension n, then TM is
a smooth manifold of dimension 2n. The canonical projection is a smooth
map π : TM → M , and for any smooth map F : M → N , the pushforward
F∗ : TM → TN is a smooth map as well.

Proof. If M is covered by coordinate neighbourhoods Uα, then TM is covered
by the sets TUα. Since φα : Uα → φα(Uα) is a diffeomorphism, the pushforward

φα∗ : TUα → Tφα(Uα) ' φα(Uα)× Rn

is a bijection by part (3) of Proposition 4.19. Since φα(Uα) is an open subset of
Rn, Tφα(Uα) is a manifold with a global chart Tφα(Uα) ' φα(Uα) × Rn. The
strategy is to use the sets TUα ⊆ TM as coordinate neighbourhoods for TM ,
to use the maps φα∗ : TUα → φα(Uα) × Rn ⊆ R2n as coordinates. For this,
we need to endow TM with a topology that makes the pushforward φα∗ into a
homeomorphism, and show that the transition functions between φα∗ and φβ∗
are smooth.

Step 1 is to define a Hausdorff topology on TM , and to show that the
intended charts φα∗ are diffeomorphisms. For this, declare W ⊆ TM to be
open if its coordinate image φα∗(W ∩ TUα) ⊆ Rn × Rn is open for every chart
(TUα, φα∗). In Problem 4.27 you are asked to check that this is indeed a topol-
ogy.

To see that the intended chart φα∗ : TUα → φα(Uα) × Rn is a homeomor-
phism, we need to check that W ⊆ TUα is open if and only if φα∗(W ) ⊆ Rn×Rn
is open. If φα∗(W ) ⊆ Rn×Rn is open, then for any other chart (TUβ , φβ∗), the
set

φβ∗(W ∩ TUβ) = καβ∗

(
φα∗(W ) ∩

(
φα(Uα ∩ Uβ)× Rn

))
is open because καβ∗ is a homeomorphism and φα(Uα ∩ Uβ) × Rn is open. It
follows that W is open in TM . The converse implication follows straight from
the definition.

To show that the topology on TM is Hausdorff, note that since M is Haus-
dorff, two different points p, q ∈ M can be separated by open neighbourhoods
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p ∈ Up ⊆ M and q ∈ Uq ⊆ M with Up ∩ Uq = ∅. Two vectors vp, vq ∈ TM
with different base points p, q ∈M can therefore be separated by the open sets
TUp ⊆ TM and TUq ⊆ TM . If p = q but vp 6= vq, then vp and vq reside in a
single coordinate chart (TUα, φα∗), and their coordinates (x, v) ∈ φα(Uα)×Rn
and (x,w) ∈ φα(Uα) × Rn can be separated by open neighbourhoods because
Rn is Hausdorff.

Step 2 is to check that the transition functions between φα∗ and φβ∗ are
smooth. This is the case because the transition function between the push-
forward charts (TUα, φα∗) and (TUβ , φβ∗) is just the pushforward καβ∗ of the
transition function καβ between the charts (Uα, φα) and (Uβ , φβ). Indeed, on
the intersection TUα ∩ TUβ = T (Uα ∩ Uβ), the transition function is given by
φβ∗◦(φα∗)−1 = (φβ ◦φ−1

α )∗ = καβ∗, considered as a map from φα(Uα×Uβ)×Rn
to φβ(Uα × Uβ)× Rn,

T (Uα ∩ Uβ)

φα(Uα ∩ Uβ)× Rn φβ(Uα ∩ Uβ)× Rn.

φα∗ φβ∗

καβ∗

Since καβ is a smooth map φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ), its pushforward καβ∗
is smooth by Lemma 4.25.

We conclude that TM is a smooth manifold with charts φα∗. To see that
π : TM → M is smooth, note that in local coordinates (Uα, φα) around p ∈ M
and (TUα, φα∗) around vp ∈ TM , the projection takes the form

πα∗α : φα(Uα)× Rn → φα(Uα), (x, v) 7→ x ,

which is clearly smooth. It remains to check that that for any smooth map
F : M → N , the pushforward F∗ : TM → TN is smooth as well. In local
coordinates (TUα, φα∗) around vp ∈ TM and (TVα, ψβ∗) around F∗vp ∈ TN ,
the pushforward F∗ admits the coordinate representation

Fα∗β∗ : φα(Uα)× Rn → ψβ(Uβ)× Rn, (x, v) 7→ (Fαβ(x), ∂µF
ν
αβ(x)vµ) ,

which is smooth by Lemma 4.25.

Problem 4.27. Check that the open sets in TM indeed constitute a topology.

Problem 4.28. Show that TS1 is diffeomorphic to S1 × R.

Problem 4.29. If φ : M → N is a diffeomorphism, then φ∗ : TM → TN is a
diffeomorphism as well.
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5 Embedded submanifolds revisited

In Section 2.6, we mainly studied embedded submanifolds Σ of Rn. Now that
we defined derivatives of smooth functions between general manifolds, we can
extend these results to embedded submanifolds Σ ⊆ M . We use this to study
the Hopf fibration.

5.1 The Regular Level Set Theorem

For a smooth function F : M → N , the pushforward F∗ : TpM → TF (p)N takes
the role of the Jacobian matrix. The notion of a regular value therefore makes
perfect sense for arbitrary smooth maps.

Definition 5.1 (Regular value). A regular value for a smooth map F : M → N
is a point c ∈ N such that for all p ∈ M with F (p) = c, the pushforward
F∗ : TpM → TcN is surjective.

Note that F∗ is surjective if and only if its Jacobian matrix ∂µF
ν
αβ with

respect to charts on M and N is surjective as a linear map from Rn to Rm.
(Or, equivalently, if ∂µF

ν
αβ satisfies any of the 3 equivalent properties in Propo-

sition 2.36.) Just like for smooth functions on Rn, the preimage Σ := F−1({c})
of a regular value is an embedded submanifold.

Theorem 5.2 (Regular level sets). If c is a regular value of a smooth function
F : M → N , then the level set Σ := F−1({c}) is a closed, embedded submanifold
of M . If M is of dimension n and N is of dimension (n − k), then Σ is of
dimension k.

Figure 11: The composition of a chart with a slice chart is a slice chart.

Proof. This is a straightforward consequence of Theorem 2.44. If c ∈ N is
a regular value and p ∈ F−1({c}), choose coordinate charts (Uα, φα) in M
around p, and (Vβ , ψβ) in N around c. Since ψβ(c) is a regular value for
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Fαβ : φα(Uα)→ Rm (why?), Theorem 2.44 yields a slice chart (Wγ , χγ) for the
subset F−1

αβ (ψβ(c)) ⊆ φα(Uα). The composition χγ ◦ φα : φ−1
α (Wγ) → χγ(Wγ)

is then a slice chart for Σ around p ∈M .

In the same way, many interesting results for smooth functions on Rn can
be ‘ported’ to the setting of manifolds by formulating them in terms of push-
forwards (rather than Jacobi matrices) and choosing charts. A case in point is
the inverse function theorem for manifolds.

Theorem 5.3 (Inverse Function Theorem). Let F : M → N be a smooth map,
and suppose that for some p ∈ M , the pushforward F∗ : TpM → TF (p)N is a
linear isomorphism. Then there exists an open neighbourhood U ⊆M of p such
that F |U : U → F (U) is a diffeomorphism.

Proof. Choose coordinates (Uα, φα) around p ∈M and (Vβ , ψβ) around F (p) ∈
N . Since F∗ : TpM → TF (p)N is an isomorphism at p, the Jacobian matrix
∂µF

ν
αβ of the coordinate representation of F is invertible at φα(p). By the ‘ordi-

nary’ inverse function theorem 2.45 applied to Fαβ : φα(Uα)→ Rm, we conclude
that Fαβ is a diffeomorphism when restricted to an open neighbourhood U of
φα(p). If follows that F is a diffeomorphism when restricted to φ−1

α (U) ⊆M .

From this, we obtain a handy tool to check whether a smooth bijection is a
diffeomorphism.

Corollary 5.4. If F : M → N is bijective, smooth, and if F∗ : TpM → TF (p)N
is a linear isomorphism for each p ∈M , then F is a diffeomorphism.

Problem 5.5. The function F : R → R with F (x) = x3 is a smooth bijection,
but not a diffeomorphism.

Problem 5.6. Let Sn ⊆ Rn+1 be the sphere of radius 1. Let F : Sn → R be
the projection F (x0, . . . , xn) = x0.

a) Every c 6= ±1 is a regular value of F .

b) The n − 1 dimensional sphere {(x0, . . . , xn) ∈ Sn ; x0 = c} of radius√
1− c2 > 0 is a closed, embedded submanifold of dimension n− 1.

c) Is the preimage F−1({c}) an embedded submanifold if c = ±1? If so,
what is its dimension?

In Section 3, we defined the tangent bundle of an embedded submanifold Σ
of Rn to be the set of all n-component vectors (v1, . . . , vn) based at p ∈ Σ ⊆ Rn,
and pointing in a direction tangent to Σ (Definition 3.1). The following result
shows that this is compatible with the definition of the tangent bundle for
general manifolds that we gave in Section 4.6.

Proposition 5.7. Let Σ ⊆M be an embedded submanifold, and let ι : Σ ↪→M
be the canonical inclusion. Then ι∗(TΣ) ⊆ TM is an embedded submanifold,
and ι∗ : TΣ ↪→ TM is a diffeomorphism onto its image.

49



Proof. With respect to a slice chart (Uα, φα) for M and its restriction (Vβ , ψβ)
to Σ, the inclusion ι : Σ→M has the simple coordinate representation

ιβα(x1, . . . , xk) = (x1, . . . , xk; 0, . . . , 0).

With respect to the charts (TUα, φα∗) for TM and (TVβ , ψβ∗) for TΣ, the
pushforward ι∗ reads

(ι∗)β∗α∗(x
1, . . . , xk; v1, . . . , vk) = (x1, . . . , xk, 0, . . . , 0; v1, . . . , vk, 0, . . . , 0)

Up to reordering of indices, this is again a slice chart, so ι∗(TΣ) is an embedded
submanifold of TM . Since ι is injective and ι∗ : TpΣ→ TpM is injective for every
p ∈M by the above coordinate representation, we conclude that ι∗ : TΣ→ TM
is injective. The coordinate representation shows that ι∗ : TVβ → TUα is a
diffeomorphism onto its image.

Remark 5.8 (Whitney Embedding Theorem). In fact, the Whitney embedding
theorem ([L03, Theorems 6.15 and 6.19]) states that any manifold of dimension
n admits an embedding into R2n.

Problem 5.9 (Elliptic curves). An elliptic curve is a (complex) manifold of the
form Σ = {(x, y) ∈ C2 ; y2 = x3 + ax+ b}.

a) Show that if 4a3 + 27b2 6= 0, then Σ is an embedded submanifold of C2.

b) Let Σ̃ = {[x, y, z] ∈ CP2 ; y2z = x3 +axz2 + bz3}. Show that the inclusion

ι : Σ→ Σ̃ defined by ι(x, y) = [x, y, 1] is injective, and that the complement

Σ̃ \ ι(Σ) of its image consists of a single point ‘at infinity’.

c) Show that if 4a3 + 27b2 6= 0, then Σ̃ is an embedded submanifold of CP2.

Hint: every point [x, y, z] ∈ Σ̃ with z 6= 0 admits a slice chart by part (a),
so it remains to verify this for the single point ‘at infinity’.

d) Conclude that Σ̃ is a smooth one-point compactification of Σ. (In fact,
one can use a complex version of the regular value theorem to show that
Σ̃ is a complex manifold.)

Problem 5.10 (Automatic smoothness of inversion). For a Lie group G, the
multiplication µ : G×G→ G is smooth by definition. Prove that the inversion
ι : G→ G with ι(g) = g−1 is automatically smooth as well.

a) Let λg : G → G be left multiplication by g, λg(h) = gh. Similarly, let
ρh(g) = gh be right multiplication by h. Show that λg∗ : ThG → TghG
and ρh∗ : TgG→ TghG are linear isomorphisms.

b) Show that µ∗ : T(g,h)(G×G) ' TgG×ThG→ TghG is given by µ∗(v, w) =
ρh∗(v) + λg∗(w).

c) Show that the map φ : G × G → G × G defined by φ(g, h) = (g, gh) is a
diffeomorphism.
Hint: use the inverse function theorem.
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d) Prove that the inverse ι(g) = g−1 is a smooth map from G to G.

Problem 5.11 (Transversal submanifolds). Two embedded submanifolds Σ1

and Σ2 of M are called transversal if TpΣ1 + TpΣ2 = TpM for all p ∈ Σ1 ∩ Σ2.
Show that the intersection Σ1 ∩Σ2 of transversal embedded submanifolds is an
embedded submanifold. Hint: you can assume without loss of generality that
M = Rn, and that Σ1 and Σ2 are regular level sets for the smooth functions
F1 : Rn → Rn−k1 and F2 : Rn → Rn−k2 .

5.2 Submersions and the Hopf fibration

A submersion is a smooth map F : M → N such that F∗ : TpM → TF (p)N
is surjective for all p ∈ M . If F itself is surjective, this is equivalent with
surjectivity of the pushforward F∗ : TM → TN . Since every value c ∈ N is a
regular value, every fibre Σc := F−1({c}) ⊆M is an embedded submanifold.

For example, let F : R3 → R be defined by F (x, y, z) = z. This map is
surjective, and since DpF = (0, 0, 1) is nonzero for all points p = (x, y, z), it
is a submersion. The fibres are precisely the 2-dimensional planes F−1({c}) =
{(x, y, z) ∈ R3 ; z = c}.
Problem 5.12. Let F : S1 × S1 → S1 be defined by F (x, y) = x. Show that F
is a surjective submersion, and describe the fibres. (A drawing is helpful.)

More generally, if M1 and M2 are smooth manifolds, then the projection
F : M1×M2 →M1 with F (p1, p2) = p1 is a surjective submersion. By the regu-
lar value theorem, every surjective submersion is locally of this form. However,
surjective submersions can behave quite differently on a global level.

Proposition 5.13. The canonical projection π : Cn+1 \ {0} → CPn, defined by
π(v) = [v], is a surjective submersion.

Proof. With respect to the coordinates (Uα, φα) on CPn, the projection is rep-
resented by πα(v0, . . . , vn) = φα([v]), so that

πα(v0, . . . , vn) =

(
v0

vα
, . . . ,

vα−1

vα
,
vα+1

vα
, . . . ,

vn
vα

)
on its domain π−1(Uα) = {(v0, . . . , vn) ∈ Cn+1 ; vα 6= 0}. This map is holo-
morphic, and hence smooth. To show that π∗ : TvCn+1 → T[v]CPn is surjective,
assume without loss of generality that α = n, so the last coordinate vn is
nonzero. Then

Dvπα =
1

vn


1 0 . . . 0 −v0/vn

0
. . . −v1/vn

...
. . . 0

...
0 . . . 0 1 −vn−1/vn


is surjective as a linear map Dvπα : Cn+1 → Cn. If we identify Cn+1 with
R2(n+1) and Cn with R2n, then the real 2n× 2(n+ 1) matrix corresponding to
Dvπα is still surjective.
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Problem 5.14. If F : M → N is a surjective submersion from an n-dimensional
manifold M to an (n−k)-dimensional manifold N , then M is the disjoint union
of k-dimensional submanifolds F−1({c}) indexed by c ∈ N .

5.2.1 The Hopf fibration

An interesting example of a map which is almost, but not quite, a submersion
is the map F : S2 → R with F (x, y, z) = z. In Problem 5.6 we saw that every
c 6= ±1 is a regular value, but it turns out that the values c = ±1 are not
regular.

Problem 5.15. Show that for the north pole n := (0, 0, 1) in S2, the pushfor-
ward F∗ : TnS2 → T1R is identically zero. Conclude that 1 is not a regular value
of F .

If we remove the north pole n := (0, 0, 1) and the south pole s := (0, 0,−1)
from S2, then the remainder S2 \ {n, s} is a disjoint union of embedded circles
{(x, y, z) ∈ S2 ; z = c}, with |c| < 1. One may wonder whether it is possible to
cover the entire 2-sphere S2 by circles which can be parameterized in a smooth
way, without ‘leftover points’.

It turns out that the answer is no; one can prove that every smooth map
F : S2 → N to a 1-dimensional manifold has a singular point p ∈ S2 where the
pushforward F∗ : TpS2 → TF (p)N vanishes. Perhaps surprisingly, the situation
for the 3-dimensional sphere S3 is quite different:

Theorem 5.16 (Hopf fibration). There exists a surjective submersion

F : S3 → S2

such that every fibre F−1({c}) ⊆ S3 is diffeomorphic to S1.

In other words, the 3-sphere S3 can be covered by embedded circles, and,
moreover, these circles can be smoothly parameterized by points on the 2-
sphere S2. The surjective submersion F : S3 → S2 is called the Hopf fibration.

5.2.2 The Hopf fibration in terms of CP1.

To construct the Hopf fibration F : S3 → S2, the basic ingredient we need is the
canonical projection from C2 \ {0} to CP1 ' S2.

Note that S3 is an embedded submanifold of C2 ' R4. Indeed, we can
consider S3 as the set of all (v0, v1) ∈ C2 for which

|v0|2 + |v1|2 = 1.

Writing v0 = x0+iy0 and v1 = x1+iy1, this is equivalent to the defining relation

x2
0 + x2

1 + y2
0 + y2

1 = 1

for the 3-sphere.
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The Hopf fibration F : S3 → S2 is just the restriction of the canonical projec-
tion π : C2 \{0} → CP1 to the 3-sphere S3 ⊆ C2 \{0}. The fibres F−1([v]) ⊆ S3

of this map are circles of the form

F−1([v0, v1]) = {eiφ(v0, v1)/
√
|v0|2 + |v1|2 ∈ C2 ; φ ∈ R}. (44)

To show that these circles are embedded submanifolds, we prove that F is a
surjective submersion.

Since S3 ⊆ C4 is embedded, we can realize TpS3 inside TpC2 ' C2 ' R4 as

TS3 ' {v ∈ R4 ; v ⊥ p}

(cf. §3). We can thus write the 4-dimensional vector space TpC2 as a direct sum

TpC2 = TpS3 ⊕NpS3

of the 3 dimensional tangent space TpS3 and the 1-dimensional vector space

NpS3 := {v ∈ R3 ; v = λp for some λ ∈ R},

called the normal bundle at p ∈ S3.
Recall that for all p ∈ S3, the pushforward π∗ : TpC2 → T[p]CP1 is surjective.

Writing v ∈ NpS3 as v = γ̇(0) for the curve γ(t) = p+ λtp in C2 \ {0}, we have
π∗(v) = d

dt |0π((1 + λt)p) = d
dt [p] = 0. We conclude that π∗|NpS3 = {0}, and

hence that π∗|TpS3 is surjective. Since this is precisely F∗ = π∗|TpS3 , this shows
that F is a surjective submersion. This concludes the proof of Theorem 5.16

Problem 5.17. Show that the fibres of the Hopf fibration are given by (44).
Why is this independent of the representative (v0, v1) ∈ C2 of [v0, v1] ∈ CP1?

5.2.3 Decompositions of the 3-sphere

The 2-sphere S2 is the disjoint union of the northern and southern hemisphere

S2
N := {(x, y, z) ∈ S2 ; z > 0} and S2

S := {(x, y, z) ∈ S2 ; z < 0},

and the equator S2
N ∩ S2

S = {(x, y, z) ∈ S2 ; z = 0}. In view of the following
exercise, we can think of S2 as two copies of the disk

D2 = {(x, y) ∈ R2 ; x2 + y2 < 1},

glued along their boundary S1 = {(x, y) ∈ R2 ; x2 + y2 = 1}.

Problem 5.18. Show that both hemispheres S2
N and S2

S are diffeomorphic to
a disk D2, and that the equator is diffeomorphic to S1.

In the same vein, the 3-sphere S3 consists of two copies of the solid ball

B3 = {(x, y, z) ∈ R3 ; x2 + y2 + z2 < 1},

glued along their boundary S2 = {(x, y, z) ∈ R3 ; x2 + y2 + z2 = 1}.
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Problem 5.19. Show that both hemispheres

S3
N := {(x, y, z, t) ∈ S3 ; t > 0} and S3

S := {(x, y, z, t) ∈ S3 ; t < 0}

are diffeomorphic to the solid ballB3, and that their common boundary S3
N ∩ S3

S =
{(x, y, z, t) ∈ S3 ; t = 0} is diffeomorphic to S2.

Problem 5.20. Formulate and prove a version of Problem 5.19 for the n-
sphere Sn.

In the following problem, we show that S3 is also the union of two solid tori
which are glued together along their boundary. The solid tori are the preimages
under the Hopf fibration F : S3 → S2 of the northern and southern hemisphere
S2
N and S2

S of the 2-sphere S2.

Problem 5.21. Show that S3 is the union of two solid tori, glued together
along their boundary.

a) Show that the Hopf fibration F : S3 → CP1 maps the open subset

U := {(v0, v1) ∈ C2 ; |v0|2 + |v1|2 = 1, v0 6= 0} ⊆ S3

into the domain U0 ⊆ CP1 of the coordinate map φ0([v0, v1]) = v1/v0.
Show that φ0 ◦ F : U → C is given by (v0, v1) 7→ v1/v0.

b) The preimage under φ0 ◦F of the disc D2 := {z ∈ C ; |z| < 1} is the solid
torus

T+ := {(
√

1− ρ2eiθ, ρeiφ) ; φ, θ ∈ R, ρ ∈ [0, 1
2

√
2 )}.

c) Exchange the roles of v0 and v1 in the above, and show that the preimage
of the disk D2 under φ1 ◦ F is the solid torus

T− := {(ρeiφ,
√

1− ρ2eiθ) ; φ, θ ∈ R, ρ ∈ [0, 1
2

√
2)}.

d) Conclude that S3 is the union of two solid tori T+ and T−, whose common
boundary

T2 = {( 1
2

√
2eiφ, 1

2

√
2eiθ) ; φ, θ ∈ R}.

is the 2-torus arising as the preimage of the equator S1 ' S2
N ∩ S2

S ⊆ S2

under the Hopf fibration.

Apparently, gluing two solid tori along their boundary T2 yields the same
result as gluing two solid balls along their boundary S2! Either way, you obtain
the 3-sphere S3.
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6 Vector fields, Lie brackets and flows

In §3.2, we defined vector fields for embedded submanifolds Σ of Rn. Now that
we defined the tangent bundle TM for a general smooth manifold M (cf. § 4.6),
we can define vector fields om M in much the same way as before.

Definition 6.1 (Vector fields). A vector field on M is a smooth map

v : M → TM

such that π ◦ v = IdM . We denote the space of vector fields on M by Vec(M).

A vector field v assigns to every point p in M an element vp of the tangent
bundle TM . The requirement that π ◦ v = IdM means that vp is in fact an
element of the tangent space TpM at the point p.

Figure 12: A vector field assigns to each p ∈M a tangent vector at the point p

Remark 6.2 (Vector fields are sections). A section of a surjective map π : X → Y
is a map σ : Y → X such that π◦σ = IdY . A vector field is thus a smooth section
of the canonical projection π : TM →M associated to the tangent bundle.

6.1 Three ways of looking at vector fields

Just like for tangent vectors, there are essentially three equivalent ways to de-
scribe vector fields. We can view vector fields as smooth sections of the canonical
projection π : TM →M , as we did above. Further, we have a local description
using coordinates, and an algebraic description using derivations.

6.1.1 Vector fields on Rn

Vector fields are particularly easy to describe if M is an open subset U of Rn. In
that case the tangent bundle is TU = U × Rn, and the projection π : TU → U
is simply the projection onto the first factor,

π(x1, . . . , xn; v1, . . . , vn) = (x1, . . . , xn).
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In this case, the requirement π ◦ v = IdM simply means that

vx = (x1, . . . , xn; v1(x), . . . , vn(x))

for some n-tuple of functions vµ : U → R. Since v : U → TU is smooth, the
functions vµ are smooth as well.

Note that the real numbers vµ(x) are the coefficients of the tangent vector
vx ∈ TxU with respect to the standard basis ∂µ of TxU , obtained from the global
chart, v(x) = vµ(x)∂µ. We therefore call the functions vµ the coefficients of the
vector field v with respect to the canonical global chart.

6.1.2 Vector fields in local coordinates

Now let M be any smooth manifold. With respect to the local coordinates
(Uα, φα) on M and (TUα, φα∗) on TM , the vector field v : M → TM is repre-
sented by

vα(x) = (x1, . . . , xn; v1
α(x), . . . , vnα(x)).

The n-tuple of smooth functions vµ : φα(Uα)→ R form the coordinate represen-
tation of v with respect to the chart (Uα, φα).

If (Uβ , φβ) is a different set of coordinates, then on the overlap Uα ∩Uβ , the
coordinate representation vµ of v with respect to (Uβ , φβ) is related to vµ by

vµ(x1, . . . , xn) =

(
∂xµ

∂xµ

)
vµ(x1, . . . , xn). (45)

Here the Einstein summation convention implies a sum over the repeated index
µ on the right hand side. The coordinates xσ with respect to (Uα, φα) should be
considered as smooth functions of the coordinates xσ with respect to (Uβ , φβ).

Since the vector vp ∈ TpM can be expressed in the coordinate basis ∂µ of
TpM as vp = vµα(x)∂µ, we will often denote the vector field by

v = vµα∂µ.

Here, by a slight abuse of notation, ∂µ denotes the vector field on Uα that assigns
to every point p ∈ Uα the coordinate vector ∂µ ∈ TpM .

Problem 6.3. Let F : R2 → R2 be the smooth function

F (x, y) =
(

(x2 + y2)x, (x2 + y2)y
)
,

and let v ∈ Vec(R2) be the smooth vector field v = x∂x + y∂y. Show that
F∗(vp) = CvF (p) for some constant C, and calculate this constant.

If v : M → TM is a vector field and f : M → R is a smooth function, then
we define the product fv : M → TM by (fv)p := f(p)vp. Since this is again
a vector field, the space Vec(M) of vector fields is a module over the smooth
functions. This means that the product (f, v) 7→ fv is linear in f as well as v,
that f(gv) = (fg)v for all f and g in C∞(M), and that 1v = v.

Problem 6.4 (Vec(M) as a module over C∞(M)). Show that the product
fv : M → TM of f and v is smooth, and that Vec(M) is a module over C∞(M).
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6.1.3 Derivations

So far, we have seen two ways of looking at vector fields. Using the definition,
we can view a vector field as a smooth function v : M → TM that assigns
to every point p in M a tangent vector vp in the tangent space TpM at p.
But in coordinates, we can also describe a vector field locally by an n-tuple of
smooth functions vµ, where different coordinate representations are related by
the Jacobian matrix of the coordinate transformation (45).

Just like for tangent vectors, there is a third, more algebraic way of describing
vector fields. It uses derivations D : C∞(M) → C∞(M), which are defined
analogously to the derivations D : C∞(M)→ R of Definition 4.9.

Definition 6.5 (Derivations of C∞(M)). A derivation of C∞(M) is a linear
operator D : C∞(M)→ C∞(M) that satisfies the Leibniz rule

D(fg) = D(f)g + fD(g) (46)

for all f, g ∈ C∞(M). The space of derivations of the algebra C∞(M) is denoted
by Der(C∞(M)).

Every vector field v ∈ Vec(M) gives rise to the Lie derivative

Lv : C∞(M)→ C∞(M),

defined by
Lv(f)(p) := vp(f). (47)

Note that if f : M → R is smooth, then the function Lv(f), which maps p to
vp(f), is smooth as well. Indeed, in local coordinates it maps x to vµα(x)∂µfα(x),
which depends smoothly on x because the coordinate representation vµ(x) of v
does so.

To see that Lv is a derivation from C∞(M) to C∞(M), we need to check
that Lv(fg) = fLv(g) + gLv(f). For this, evaluate the above expression in
p ∈ M and use that every value vp of the vector field v is a derivation from
C∞(M) to R,

Lv(fg)(p) = vp(fg)

= f(p)vp(g) + g(p)vp(f)

= (fLv(g))(p) + (gLv(f))(p).

Problem 6.6 (Derivations as a vector space). Let D,E : C∞(M)→ C∞(M)
be derivations, and let λ ∈ R. Then

a) λD is a derivation

b) D + E is a derivation.

Problem 6.7 (Derivations as a module over C∞(M)). Let D be a derivation
from C∞(M) to C∞(M), and let f ∈ C∞(M) be a smooth function. Then
the operator fD : C∞(M)→ C∞(M) defined by (fD)(g) := fD(g) is again a
derivation.
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In fact, it turns out that every derivation D : C∞(M) → C∞(M) is of the
form Lv for some vector field v ∈ Vec(M).

Theorem 6.8 (Algebraic characterization of vector fields). Every derivation
D : C∞(M) → C∞(M) is of the form D(f) = Lv(f) for some vector field
v ∈ Vec(M).

Proof. We prove this in §7.

In view of the above result, one often identifies a vector field on M with a
derivation of C∞(M). Rather than Lv(f), one then simply writes v(f).

6.1.4 The three descriptions of vector fields

Summarizing, we now have three equivalent ways of describing vector fields.

(1) As a smooth map v : M → TM such that v(p) ∈ TpM for all p ∈M .

(2) The restriction of v to a coordinate neighbourhood Uα ⊆ M can be de-
scribed as v = vµα∂µ, using the n-tuple of smooth functions vµα. The co-
ordinate representation vβ

µ with respect to a different coordinate system

(Uβ , φβ) is related to vµα by vµβ = ∂xµ

∂xµ v
µ
α on the overlap Uα ∩ Uβ .

(3) A vector field v is uniquely determined by the derivation Lv, and every
derivation is of this form.

Each of these descriptions has its advantages and disadvantages, and it depends
on the context which one is more convenient to use.

6.2 The Lie bracket

For two derivations D,E : C∞(M)→ C∞(M), we define their Lie bracket by

[D,E] := D ◦ E − E ◦D. (48)

We say that D and E commute if [D,E] = 0.

Proposition 6.9. The Lie bracket [D,E] of two derivations is a derivation.

Proof. Since D : C∞(M) → C∞(M) and E : C∞(M) → C∞(M) are linear,
their concatenations D ◦E and E ◦D are linear. It follows that D ◦E−E ◦D is
linear as well. The main thing to show is that [D,E] := D ◦E −E ◦D satisfies
the Leibniz rule

[D,E](fg) = f([D,E](g)) + ([D,E](f))g. (49)

Using the Leibniz rule for D and E to expand (49), we find

[D,E](fg) = D(E(fg))− E(D(fg))

= D(E(f)g + fE(g))− E(D(f)g + fD(g))

= D(Ef)g + fD(Eg)− E(D(f))g − fE(D(g))

+E(f)D(g) +D(f)E(g)−D(f)E(g)− E(f)D(g)

= [D,E](f)g + f [D,E](g),

58



as required. Note that D ◦ E and E ◦D separately do not satisfy the Leibniz
rule! The fact that [D,E] is a derivation hinges on the cancellation in the fourth
line, which is due to the minus sign in the definition of the Lie bracket.

6.2.1 Lie bracket of vector fields

If D and E are given by the Lie derivative along the vector fields v and w, then
the derivation [D,E] is again the Lie derivative along a vector field. If we denote
this vector field by [v, w], we have

[Lv,Lw] = L[v,w].

In local coordinates, the Lie bracket [v, w] of two vector fields v and w can be
calculated as follows.

Proposition 6.10. If v = vµ∂µ and w = wν∂ν with respect to the coordinates
(Uα, φα), then

[vµ∂µ, w
ν∂ν ] = (vµ∂µw

ν − wµ∂µvν)∂ν .

Proof. Since

vµ∂µ(wν∂ν(f)) = (vµ∂µw
ν)∂νf + vµwν∂µ∂νf

and
wν∂ν(vµ∂µ(f)) = (wν∂νv

µ)∂µf + vµwν∂ν∂µf,

and since ∂µ∂νf = ∂ν∂µf for the smooth function f , we find

[vµ∂µ, w
ν∂ν ](f) = (vµ∂µw

ν)∂νf − (wν∂νv
µ)∂µf. (50)

Since we sum over µ and ν in both terms, we may exchange the labels µ and
ν, so that (wν∂νv

µ)∂µf = (wµ∂µv
ν)∂νf . To see why this is true, it may help

to relabel µ and ν by i and j first, and then relabel i and j by ν and µ in the
converse order;

n∑
ν=1

n∑
µ=1

(wν∂νv
µ)∂µf =

n∑
j=1

n∑
i=1

(wj∂jv
i)∂if =

n∑
µ=1

n∑
ν=1

(wµ∂µv
ν)∂νf.

From (50), we then find [vµ∂µ, w
ν∂ν ](f) = (vµ∂µw

ν)∂νf − (wµ∂µv
ν)∂νf , as

required.

6.2.2 Algebraic properties of the Lie bracket

The Lie bracket satisfies the following algebraic properties.

Proposition 6.11. The Lie bracket [ · , · ] : Vec(M) × Vec(M) → Vec(M) is
bilinear, skew-symmetric, and it satisfies the Jacobi identity

[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0. (51)
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Proof. The skew-symmetry [v, w] = −[w, v] is clear from the definition, as is the
bilinearity

[u, av + bw] = a[u, v] + b[u,w]

[av + bw, u] = a[v, u] + b[w, u].

For the Jacobi identity, we identify the vector fields u, v and w with the corre-
sponding derivations and note that

[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = uvw − uwv − vwu+ wvu

+vwu− wvu− wuv + vuw

+wuv − vuw − uvw + uwv = 0

because the 12 terms cancel pairwise.

A vector space g with a skew-symmetric, bilinear form [ · ; · ] : g× g→ g sat-
isfying the Jacobi identity is called a Lie algebra. By Proposition 6.11, Vec(M)
is a Lie algebra.

Problem 6.12. For M = R3, calculate:

a) [∂x + x∂y, x
2∂y + x∂z].

b) [∂x, x
12∂x + ex∂y]

Problem 6.13. For v = x2y∂x + y∂y and w = x∂x + y2∂y, calculate:

a) The term vµ∂µw
ν for ν = 1 and ν = 2

b) The term wµ∂µv
ν for ν = 1 and ν = 2

c) The Lie bracket (vµ∂µw
ν − wµ∂µvν)∂ν

Problem 6.14. For M = R3, let E := x∂x + y∂y + z∂z be the Euler vector
field. Calculate:

a) [E, x37y59z4∂x]

b) [E, x11y38z51∂y]

c) [E, x37y59z4∂x + x11y38z51∂y + x63y14z23∂z]

d) A homogeneous polynomial of degree N is a polynomial of the form

p(x, y, z) =
∑

n1+n2+n3=N

an1,n2,n3x
n1yn2zn3 .

Show that if p1(x, y, z), p2(x, y, z) and p3(x, y, z) are homogeneous poly-
nomials of degree N , then [E, pµ(x, y, z)∂µ] = (N − 1)(pµ∂µ).
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6.3 Flows and the Lie bracket

A vector field v gives rise to an ordinary differential equation (ODE) on the
manifold M . If we think of v as the velocity field of a moving fluid or gas, and
if we think of γ(t) ∈ M as the the position of a particle drifting along the flow
of v, then the curve γ : R→M satisfies the ODE

γ̇(t) = vγ(t). (52)

Together with the boundary condition γ(0) = p, this specifies the flow along
the vector field v, starting at p ∈ M . Indeed, the tangent vector γ̇(t) to the
curve at time t is equal to the vector field v at the position γ(t) of the particle.

Remark 6.15. In local coordinates, equation (52) reads

γ̇µα(t) = vµα(γ1
α(t), . . . , γnα(t)).

Since the functions vµα are smooth, they are certainly Lipschitz on every closed
subset of φα(Uα). The local existence and uniqueness results for first order
ODE’s therefore apply, and yield local existence and uniqueness for (52).

If the flow starts at a different point p′, then, of course, we obtain a different
curve γ′. We denote by φt(p) the flow along the vector field v starting at p ∈M .
In other words, we define t 7→ φt(p) to be the solution of the ODE

d

dt
φt(p) = vφt(p) (53)

φ0(p) = p. (54)

One can show that for each p ∈ M , there exists an interval (a, b), possibly
depending on p, on which the solution t 7→ φt(p) is well defined and smooth.
A vector field is called complete or integrable if its integral curves exist for all
time t ∈ R, and for all starting points p ∈M .

Problem 6.16. Let M = R2.

a) Show that the vector field v = x∂y − y∂x is integrable, and determine the
flow φt(x, y).

b) Show that the vector field v = x2∂x − y∂y is not integrable. For which
values of t is the flow φt(x, y) well defined?

For complete vector fields v, one can prove that (t, p) 7→ φt(p) is a smooth
map R ×M → M , and that for each t ∈ R, the map φt : M → M is a diffeo-
morphism with inverse φ−t. (See [L03, Chapter 9].)

6.3.1 Transporting a function along the flow

The flow equation (52) yields a first order PDE on f ∈ C∞(M) by ‘dragging
a function along the flow’. Simply apply the left and right hand side of equa-
tion (53) to a smooth function f ∈ C∞(M) to find that d

dtf(φt(p)) = vφt(p)(f).
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Evaluating this at zero, we find

d

dt

∣∣∣
t=0

f(φt(p)) = Lv(f)(p). (55)

It follows that the Lie derivative Lv(f) of f along the vector field v is just the
derivative of f along the flow generated by v.

Remark 6.17. Suppose that ft(p) represents, say, the temperature of a fluid in
p ∈M at a time t. If the heat transfer is dominated by convection rather than
diffusion, the temperature at p at time 0 will be the same as the temperature
at φt(p) at time t. We therefore have ft(φt(p)) = f0(p) for all p, and hence
ft(p) = f0(φ−1

t (p)). Since φ−1
t (p) = φ−t(p), the convection equation reads

∂
∂tft = −Lv(f),

or ∂tft(x) = −vµ(x)∂µf(x) in local coordinates.

6.3.2 The Lie bracket in terms of flows

If φvt and φwt are the flows generated by complete vector fields v and w on M ,
respectively, then

vp(f) =
d

dt

∣∣
0
f(φvt (p)), and

wp(f) =
d

ds

∣∣
0
f(φws (p)).

It follows that

[v, w]p(f) = v

(
d

ds

∣∣
0
f(φws (p))

)
− w

(
d

dt

∣∣
0
f(φvt (p))

)
=

d

dt

∣∣
0

d

ds

∣∣
0

(
f
(
φws ◦ φvt (p)

)
− f

(
φvt ◦ φws (p)

))
.

In other words, the Lie bracket is a measure of the difference between flowing
first along v and then along w, or flowing first along w and then along v. In

particular, if the flows of v and w commute, φ∂xt ◦φ
∂y
s = φ

∂y
s ◦φ∂xt , then [v, w] = 0.

Figure 13: Left: Flow of the commuting vector fields v = ∂x and w = ∂y. Right:
Flow of the noncommuting vector fields v = ∂x and w = x∂y.
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Problem 6.18. Let u = x∂x+y∂y, v = x∂y−y∂x, and w = ∂x be vector fields on
R2. The three vector fields u, v, w give rise to the three flows φAt (x, y) = (x+t, y),
φBt (x, y) = (xet, yet), and φC(x, y) = (x cos(t) − y sin(t), x sin(t) + y cos(t)).
Which vector field belongs to which flow?

Problem 6.19 (Pushforward of vector fields). Let φ : M → N be a diffeomor-
phism from M to N .

a) Let v : M → TM be a vector field on M . Show that vφ := φ∗ ◦ v ◦ φ−1 is
a vector field on N .

b) Show that (fv)φ = (f ◦ φ−1)vφ for any f ∈ C∞(M).

c) Let D : C∞(M) → C∞(M) be a derivation on M . Show that the map
Dφ(f) := D(f ◦ φ) ◦ φ−1 is a derivation on N .

d) Let Lv : C∞(M)→ C∞(M) be the Lie derivative along the vector field v.
Show that (Lv)φ = Lvφ .

e) Show that [Dφ, Eφ] = [D,E]φ for all derivations D,E on M .

f) Show that [vφ, wφ] = [v, w]φ for all vector fields v, w ∈ Vec(M).

In the following problem, you can use that if f : M1 →M2 and g : N1 → N2

are smooth maps, then (m,n) 7→ (f(m), g(n)) is a smooth map M1 × N1 →
M2 ×N2 (cf. Problem 2.24).

Problem 6.20. Let G be a Lie group of dimension n.

a) Prove that for each g ∈ G, the left multiplication λg(h) := gh is a diffeo-
morphism λg : G→ G. What is its inverse?

b) For a vector field v ∈ Vec(G), we define vλg := (λg)∗ ◦ v ◦ (λg)
−1 as in

Problem 6.19. Define g to be the vector space of all left-invariant vector
fields,

g := {v ∈ Vec(G) ; vλg = v for all g ∈ G}.

Let 1 ∈ G be the identity in G, and let ev1 : g → T1G be the evaluation
at the identity, ev1(v) := v1. Show that ev1 is injective.

c) Show that ev1 is surjective.

Hint: Let γ : R → G be a smooth curve in G with γ(0) = 1. Show that
the map G × R → G defined by (g, t) 7→ gγ(t) is then smooth as well. It
follows that vg := d

dt |0gγ(t) is a smooth map G → TG. Show that v is a
vector field, and that v ∈ g.

d) What is the dimension of g? Show that for v, w ∈ g, the Lie bracket [v, w] is
again an element of g. The vector space g with the bracket [ · , · ] : g×g→ g
is called the Lie algebra of the Lie group G.
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7 Derivations

Every tangent vector vp ∈ TpM gives rise to a derivation Dv
p : C∞(M) → R at

p ∈ M given by Dv
p(f) := vµα∂µ(f). Similarly, every vector field v ∈ Vec(M)

gives rise to a derivation Lv : C∞(M)→ C∞(M) with Lv(f)(p) := vµα(x)∂µfα(x).
In this section, we show that this yields a bijective correspondence: all deriva-
tions are of this type.

7.1 Evaluation of derivations

If D : C∞(M)→ C∞(M) is a derivation and p is a point in M , then the operator
Dp : C∞(M) → R defined by Dp(f) := (D(f))(p) is a derivation at p. We call
Dp the evaluation of D at p.

Proposition 7.1. A derivation D : C∞(M) → C∞(M) is zero if and only if
Dp = 0 for all p ∈M .

Proof. The ‘only if’ direction is clear. For the converse direction, suppose that
Dp = 0 for all p ∈ M , and let f ∈ C∞(M) be a smooth function. Then
Dp(f) := (D(f))(p) = 0 for all p ∈M , so D(f) = 0. But f was arbitrary, so D
is zero.

Since two derivations D and D′ are equal if and only if D − D′ = 0, it
follows that D = D′ if and only if Dp = Dp for all p ∈ M . In other words, a
derivation D : C∞(M) → C∞(M) is completely determined by its evaluations
Dp : C∞(M)→ R.

7.2 Vectors and vector fields on Rn

We show that for M = Rn, all derivations at a ∈ Rn are derived from tangent
vectors, and all derivations of C∞(M) from vector fields.

Proposition 7.2. Every derivation DaC
∞(Rn) → R at a ∈ Rn is of the form

Da(f) = vµa∂µf(a), where vµa is obtained by applying Da to the coordinate func-
tion xµ ∈ C∞(Rn), vµa = Da(xµ).

Proof. By the Hadamard Lemma (cf. Problem 4.13), we can write

f(x) = f(a) + (xµ − aµ)ρµ(x) (56)

for smooth functions ρµ : Rn → R with ρµ(a) = ∂
∂xµ f(a). We apply Da to f ,

and consider the two terms in (56) separately. The first term vanishes. Indeed,
we have Da(1) = 0 since Da(1) = Da(1 · 1) = Da(1) · 1 + 1 · Da(1). By
linearity, we conclude that Da vanishes on all constant functions, so in particular
Da(f(a)) = 0. Since xµ − aµ evaluates to zero at a, the second term yields

Da(f) = Da

(
ρµ(x)(xµ − aµ)

)
= ρµ(a)Da(xµ − aµ) = ∂µf(a)Da(xµ − aµ) .

Since Da vanishes on the constants aµ, this yields Da(f) = Da(xµ)∂µf(a) as
required.
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Since Dera(C∞(Rn)) is isomorphic to TaRn, it is a vector space of dimension
n, with basis ∂µ|a defined by ∂µ|a(f) := ∂

∂xµ f(a).

Proposition 7.3. Every derivation D : C∞(Rn) → C∞(Rn) is of the form
D(f) = vµ∂µf , with vµ ∈ C∞(Rn) given by vµ = D(xµ).

Proof. By Proposition 7.2, the derivation Da(f) := D(f)(a) at the point a ∈ Rn
is of the form Da(f) = vµa∂µf(a) with vµa = Da(xµ) = D(xµ)(a). Note that
vµ : a 7→ vµa is a smooth function, since it is the image under D of the smooth
function xµ. Since D(f)(a) = vµa∂µf(a) for every a ∈ Rn, we have D(f) =
vµ∂µf .

7.3 Smooth bump functions

In order to transport the results from Section 7.2 from Rn to M , we have to
prove the existence of bump functions on M .

Lemma 7.4 (Bump functions). Let U ⊂ M be an open neighbourhood of the
point p0 ∈ M . Then there exists a smooth function ψ : M → R and closed
neighbourhoods V1 ⊆ V2 ⊆ U of p0 such that:

(1) ψ(p) = 1 for p in V1,

(2) ψ(p) = 0 for p ∈M − V2,

and ψ(p) ∈ [0, 1] for all p ∈M .

The reason that ψ is called a bump function should be clear from Figure 14.

Figure 14: Bump function on U ⊆M .

We start by constructing a bump function on Rn. The following is the special
case of Lemma 7.4 where M = Rn, U = Rn, p0 = 0, V2 = Bε(0) is the (closed)
ball of radius ε around 0, and V1 = Bε/2(0) is the (closed) ball of radius ε/2.

Lemma 7.5. For every ε > 0, there exists a smooth function ψn : Rn → R
with ψn(x) = 1 for ‖x‖ ≤ ε/2, ψn(x) = 0 for ‖x‖ ≥ ε, and 0 < ψn(x) < 1 for
ε/2 < ‖x‖ < ε.

Proof. First, define f : R→ R by

f(x) :=

{
e−1/x if x > 0,

0 if x ≤ 0 .
(57)
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Since this is a smooth function by Problem 7.6, the function

h(x) :=
f(2− x)

f(2− x) + f(x− 1)
(58)

is smooth as well. It satisfies h(x) = 1 for x ≤ 1, 0 < h(x) < 1 for 1 < x < 2,
and h(x) = 0 for x ≥ 2. It is well defined because the denominator is positive.
Indeed, for every x either the expression x−1 or the expression 2−x is positive,
yielding a positive value of f .

Using this function h, we obtain a bump function on Rn by setting

ψn(x) := h( 2
ε‖x‖) .

One checks that ψn(x) is zero for ‖x‖ ≥ ε, one for ‖x‖ ≤ ε/2, and that
0 < ψn(x) < 1 for ε/2 < ‖x‖ < ε. It is smooth in 0 because it is identically
1 on a ball of radius ε/2 around 0.

Problem 7.6. Prove that f in equation (57) is a smooth function.

a) Prove that f ′(0) = 0, and that f ′ is continuous on R.

b) Show by induction that

f (k)(x) :=

{
pk(x)
x2k e

−1/x if x > 0,
0 if x ≤ 0 ,

where pk(x) is a polynomial of degree k − 1 given by p1 = 1 and by
pk+1 = x2p′k(x) + (1− 2kx)pk(x).

c) Conclude that f is smooth.

We now have an obvious candidate for the bump function ψ on M . Since
M locally looks like Rn, we simply transport the bump function ψn on Rn to a
bump function ψ on M , using a coordinate chart φα : M ⊃ Uα → Rn centered
around p0 ∈M .

Proof of Proposition 7.4. Choose a chart (Uα, φα) that contains p0, and choose
an ε > 0 such that Bε(φα(p0)) ⊆ φα(U ∩ Uα) ⊆ Rn. Define

ψ(p) :=

{
ψn(φα(p)− φα(p0)) if p ∈ Uα,

0 if p /∈ Uα ,

and define the closed neighbourhoods V1, V2 by V1 := φ−1
α (Bε/2(φα(p0))) and

V2 := φ−1
α (Bε(φα(p0))). One checks that ψ(p) = 1 for p ∈ V1, and ψ(p) = 0 for

p ∈M−V2. Since ψn is smooth, ψ is smooth in any point p ∈ Uα. It remains to
show that ψ is smooth for p ∈M −Uα. For this, it suffices to show that V2 ⊆ U
is closed. Indeed, since ψ is then zero on the open set M − V2 containing p, ψ
is smooth at p ∈M − Uα.

The proof that V2 is closed uses the Hausdorff property of M . First of all, the
closed ball Bε(φα(p0)) ⊆ Rn is compact because it is a closed, bounded subset
of Rn (Cf. Corollary A.55). Since the restriction of φ−1

α to Bε(φα(p0)) ⊆ φα(Uα)
is a continuous map from the compact ball to the Hausdorff space M , its image
is closed by Corollary A.56(b).
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7.4 Vectors and vector fields on M

In order to transport the results from Section 7.2 from Rn to M , we need to
investigate how derivations transform under smooth maps.

For a smooth map F : M → N , the pullback F ∗ : C∞(N)→ C∞(M) defined
by F ∗f := f ◦ F is an algebra homomorphism. That is,

F ∗(αf + βg) = αF ∗f + βF ∗g and

F ∗(fg) = (F ∗f)(F ∗g)

for all f, g ∈ C∞(N) and α, β ∈ R. We use this to define the pushforward on
the level of derivations by F∗D(f) := D(F ∗f).

Proposition 7.7. If Dp is a derivation of C∞(M) at p ∈ M , then the push-
forward F∗Dp along F : M → N is a derivation of C∞(N) at F (p) ∈ N . The
resulting map F∗ : Derp(C

∞(M))→ DerF (p)(C
∞(N)) is linear.

Proof. To prove the Leibniz rule (34) for F∗Dp, use the Leibniz rule for Dp and
the fact that F ∗(gh) = F ∗(g)F ∗(h),

F∗Dp(gh) = Dp

(
F ∗(g · h)

)
= Dp

(
(F ∗g) · (F ∗h)

)
= Dp(F

∗g) · (F ∗h)(p) + (F ∗g)(p) ·Dp(F
∗h)

= F∗Dp(g) · h(F (p)) + g(F (p)) · F∗Dp(h) .

That is F∗Dp satisfies the Leibniz rule for C∞(N) at the point F (p) ∈ N .
Since F ∗ : C∞(N) → C∞(M) and Dp : C∞(M) → R are linear maps, their
composition F∗Dp(f) = Dp ◦ F ∗(f) is linear in f as well as Dp.

The chain rule for derivations is just as easy to prove as the chain rule for
tangent vectors.

Proposition 7.8 (Chain rule). Let M and N be smooth manifolds.

(a) If F : M → N and G : N → L are smooth maps, then G∗ ◦ F∗(Dp) =
(G ◦ F )∗(Dp).

(b) Id∗ : Derp(C
∞(M))→ Derφ(p)(C

∞(M)) is the identity.

(c) If φ : M → N is a diffeomorphism, then the pushforward on derivations
φ∗ : Derp(C

∞(M))→ Derφ(p)(C
∞(N)) is a linear isomorphism.

Proof. For (a), note that both (G ◦ F )∗(Dp)(f) and F∗(G∗Dp)(f) are equal to
Dp(f ◦ G ◦ F ). Part (b) is trivial. Part (c) follows by applying (a) and (b) to
the equations φ−1 ◦ φ = Id and φ ◦ φ−1 = Id.

Although the following result looks rather innocuous, its proof actually uses
the existence of bump functions, and hence the Hausdorff property of M .

Theorem 7.9. Let U ⊆ M be an open subset, let p ∈ U , and let ι : U ↪→ M
be the canonical inclusion. Then ι∗ : Derp(C

∞(U))
∼→ Derp(C

∞(M)) is a linear
isomorphism.
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First we prove that for a derivation Dp of C∞(M) at p ∈ M , the value of
Dp(f) depends only on the values of f on an arbitrarily small neighbourhood
U ⊆M of p.

Lemma 7.10. Let Dp ∈ Derp(C
∞(M)), let f, g ∈ C∞(M), and suppose that

f |U = g|U on an open neighbourhood U ⊆M of p. Then Dp(f) = Dp(g).

Proof. Let ψ : M → R be a bump function around p ∈ U in the sense of
Lemma 7.4. Then 1 − ψ is equal to 1 on M − U . Since f − g is equal to 0
on U , we have

Dp(f − g) = Dp

(
(1− ψ)(f − g)

)
.

By the Leibniz rule, we then find

Dp(f − g) = Dp(1− ψ)(f(p)− g(p)) + (1− ψ(p))Dp(f − g),

which is 0 since ψ(p) = 1 and f(p) = g(p). It follows that Dp(f) = Dp(g).

Having seen that Dp(f) is determined by the restriction f |U of f ∈ C∞(M)
to U ⊆M , it is not hard to prove that ι∗ : Derp(C

∞(U))→ Derp(C
∞(M)) is a

linear isomorphism.

Proof of Theorem 7.9. First we show that ι∗ : Derp(C
∞(U)) → Derp(C

∞(M))
is injective. Let Dp ∈ Derp(C

∞(U)) with ι∗Dp = 0. Then ι∗Dp(f) = Dp(ι
∗f) =

0 for all f ∈ C∞(M). Since ι∗f = f |U , it follows that Dp(g) = 0 for any
g ∈ C∞(U) which is the restriction g = f |U of a smooth function on M . Unfor-
tunately, not every smooth function g : U → R extends to M . (See figure 15)
However, for any g ∈ C∞(U), we can construct a smooth function f on M by

f(q) :=

{
ψ(q)g(q) for q ∈ U
0 for q ∈M − U.

This function is smooth because it is the product of two smooth functions on the
open set U ⊆ M , and it is identically zero on the open set M − V ⊆ M . Since
ψ is 1 in a neighbourhood V of p, the functions f and g agree on V ⊆ U . It
follows that Dp(g) = Dp(f |U ) = Dp(ι

∗f) = 0, so Dp vanishes on all g ∈ C∞(U).
Thus Dp = 0, and ι∗ is injective.

Next we show that ι∗ is surjective. For a given derivation DM
p : C∞(M)→ R,

we construct a derivation DU
p : C∞(U) → R such that ι∗D

U
p = DM

p . On g ∈
C∞(U), we define DU

p (g) to be DM
p (f) for any f ∈ C∞(M) that agrees with g on

some (arbitrarily small) neighbourhood V of p. The existence of such functions
follows from the above construction, and the value of DM

p (f) is independent of

the choice of f by Lemma 7.10. Since DM
p is linear and satisfies the Leibniz

identity, the same holds for DU
p . By construction, we now have ι∗D

U
p (f) =

DU
p (ι∗f) = DU

p (f |U ) = DM
p (f), and it follows that ι∗ is surjective.

Recall from Section 4.2 that every tangent vector vp ∈ TpM gives rise to a
derivation Dv

p of C∞(M) at p ∈ M that satisfies Dp(f) = d
dt |0f(γ(t)) for any

smooth curve γ through p with tangent vector vp.
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Figure 15: Not every smooth function on U ⊆M extends to M

Theorem 7.11. Every derivation Dp : C∞(M) → R at p ∈ M is of the form
Dv
p for a tangent vector v ∈ TpM . The resulting map TpM → Derp(C

∞(M)) is
a linear isomorphism.

Proof. Let φα : Uα → M ⊇ φα(Uα) ⊆ Rn be a chart around p ∈ M . By
Theorem 7.9, Derp(C

∞(M)) is canonically isomorphic to Derp(Uα). Since
φα is a diffeomorphism from Uα to φα(Uα), it induces a linear isomorphism
from Derp(Uα) to Derφα(p)(φα(Uα)). By another application of Theorem 7.9,
Derφα(p)(φα(Uα)) is canonically isomorphic to Derφα(p)(Rn). It follows that ev-
ery derivation Dp is of the form φα∗D

′
φα(p) for some D′φα(p) ∈ Derφα(p)(Rn).

Since D′φα(p)(fα) = vµα∂µfα by Proposition 7.2, the result follows.

Theorem 7.12. Every derivation D : C∞(M)→ C∞(M) is of the form D(f) =
Lv(f) for some vector field v ∈ Vec(M). The resulting map v 7→ Lv is is a
C∞(M)-linear isomorphism from Vec(M) to Der(C∞(M)).

Proof. To see that the map is linear over C∞(M), simply check that Lfv(g) =
(fLv)(g). We prove that the map is an isomorphism. By Proposition 7.1, the
derivation D is uniquely determined by its evaluation Dp at all points p ∈ M .
For every p, Theorem 7.11 yields a vector vp ∈ TpM such that D(f)(p) = vp(f).
To show that the resulting section v : M → TM, p 7→ vp is smooth, let vµα(x(p))
be the coordinates of vp with respect to a chart (Uα, φα) around p. If we
choose a bump function ψ on Uα that is 1 in a neighbourhood V of p ∈ M ,
then vµα = D(ψxµ) on V . Since the latter is a smooth function on M , the
coordinates vµα(x) are smooth in a neighbourhood of p. Since p was arbitrary,
the result follows.
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8 Tensors, tensor fields and metrics

Recall that the mathematical structures underlying Riemannian and Minkowski
geometry are essentially symmetric bilinear forms. In the case of Riemannian
geometry on Rn, this is an inner product ( · , · ) : Rn ×Rn → R. For Minkowski
geometry, the relevant bilinear form η : R4 × R4 → R has signature (−+ ++).

In order to generalise Riemannian and Minkowski geometry to the setting
of smooth manifolds, we will equip every tangent space TpM with a bilinear
form gp : TpM ×TpM → R in such a way that gp depends smoothly on p. More
generally, we will need tensors on M .

8.1 Covariant tensors

Tensors are most easily described using multilinear algebra. If V and W are
vector spaces, then a multilinear map

F : V × . . .× V︸ ︷︷ ︸
k times

→W

is a map which is linear in each of its entries. In other words, we have

F (v1, . . . , αvi + βv′i, . . . , vk) = αF (v1, . . . , vi, . . . , vk) + βF (v1, . . . , βv
′
i, . . . , vk)

for all vi, v
′
i ∈ V , and for all α, β ∈ R.

8.1.1 Definition of covariant tensors

Let M be a manifold, and let p be a point in M . A covariant tensor of rank k
at p ∈M is a multilinear map

τp : TpM × . . .× TpM︸ ︷︷ ︸
k times

→ R.

An important special case are the tensors of rank k = 2, the bilinear forms
TpM×TpM → R. A covariant tensor of rank 1 is simply a linear map TpM → R,
often called a linear form.

We denote the set of covariant tensors of rank k at p ∈ M by Tk(M)p.
Equipped with the usual addition and scalar multiplication, this is a vector
space of dimension nk. To see this, we calculate τ(v1, . . . , vk) with respect to a
coordinate basis ∂µ of TpM . For i = 1, . . . , k we express vi = vµi ∂µ as a linear
combination of basis vectors. Using the fact that τ is linear in each of its k
entries, we find that

τ(v1, . . . , vk) = τ(vµ1

1 ∂µ1 , . . . , v
µk
k ∂µk) (59)

= vµ1

1 · · · v
µk
k τ(∂µ1 , . . . , ∂µk).

Note that the Einstein summation convention implies a sum Σnµ1=1 . . .Σ
n
µk=1!

With respect to the basis ∂µ, the tensor τ is therefore completely determined

70



by the nk real numbers

τµ1...µk := τ(∂µ1
, . . . , ∂µk), (60)

which depend linearly on τ . They are the coefficients of the tensor τp with
respect to the coordinate basis.

8.1.2 The covariant tensor bundle

The tensor bundle Tk(M) is the set of all covariant tensors on M . In other
words, it is the disjoint union

Tk(M) :=
⊔
p∈M

Tk(M)p (61)

of the vector spaces Tk(M)p. Note that the bundle Tk(M) is not a vector space,
since it does not make sense to add tensors that are defined on different tangent
spaces. The bundle Tk(M) comes with the canonical projection π : Tk(M)→M ,
defined by π(τp) = p.

To construct a smooth manifold structure on Tk(M), we can proceed along
the same lines as in §4.6, where we constructed a manifold structure on the
tangent bundle TM . We will skip over some of the details, but if you reread
§4.6, you should be able to fill the gaps yourself.

Recall that local coordinates xµ on Uα ⊆M yield a coordinate basis ∂µ for
every tangent space TpM over p ∈ Uα. This allows us to describe a tensor τp at
a point p ∈ Uα by the n + nk coordinates xµ and τµ1...µk . Specifically, xµ are
the coordinates of the point p, and if the vectors v1, . . . , vk ∈ TpM are given by
vi = vµi ∂µ, then

τp(v1, . . . , vk) = τµ1...µkv
µ1

1 . . . vµk .

We thus obtain a chart on the set π−1(Uα) ⊆ TkM of all tensors τp whose base
point p lies in Uα.

To show that the coordinate transitions are smooth, suppose that xµ are
local coordinates on a different coordinate neighbourhood Uβ ⊆ M . Then on
the intersection Uα ∩ Uβ , we have

τµ1...µkv
µ1
1 · · · v

µk
k = τp(v1, . . . , vk) = τµ1...µkv

µ1

1 · · · v
µk
k . (62)

Recall from (33) that vµ = Jµµ v
µ, where

Jµµ :=
(
∂xµ

∂xµ

)
(63)

is the Jacobian matrix of the coordinate transformation xµ(x1, . . . , xn). Equa-
tion (62) then yields

τµ1...µkv
µ1
1 · · · v

µk
k = τµ1...µkJ

µ1

µ1
· · · Jµkµk v

µ1
1 · · · v

µk
k . (64)
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Since this holds for all vectors v1 through vk, the coordinates of τp with respect
to xµ and xµ are related by

τµ1...µk = τµ1...µkJ
µ1

µ1
· · · Jµkµk . (65)

Since the Jacobian matrix Jµµ depends smoothly on the point xµ, the coordinates

xµ and τµ1...µk depend smoothly on xµ and τµ1...µk .
This shows that TkM can be covered with coordinates in such a way that

the transition functions are smooth. In the same way as in §4.6, we can define
a Hausdorff topology on Tk(M) for which the coordinate charts are homeomor-
phisms onto their image. In these coordinates, it is easy to see that the canonical
projection is a surjective submersion: in local coordinates, it simply projects on
the variables x1 through xn.

Proposition 8.1 (Tk(M) as a smooth manifold). The covariant tensor bundle
Tk(M) is a smooth manifold, and the canonical projection π : Tk(M)→M is a
surjective submersion.

8.2 Covariant tensor fields

Recall that a vector field is a smooth section of the canonical projection from
TM to M . Similarly, we define a covariant tensor field as a smooth section of
the canonical projection π : Tk(M)→M .

Definition 8.2. A covariant tensor field omM is a smooth map τ : M → Tk(M)
such that π ◦ τ = IdM .

In other words, the tensor field τ assigns to each point p ∈M a multilinear
map

τp : TpM × . . .× TpM → R.
In local coordinates xµ, a covariant tensor field is described by nk smooth func-
tions τµ1...µk(x1, . . . , xn). If the same tensor field is described using different
coordinates xµ, then the components are related by

τµ1...µk = Jµ1

µ1
· · · Jµkµk τµ1...µk , (66)

where on the right hand side, τµ1...µk is considered as a function of the variables

xµ via the coordinate transformation xµ(x1, . . . , xn).

8.2.1 Three different ways of describing covariant tensor fields

A covariant tensor field can thus be described either as a smooth section of
the canonical projection π : Tk(M)→M , or by its components τµ1...µk in local
coordinates xµ. A third, more algebraic description of tensor fields is obtained
as follows.

A covariant tensor field τ : M → Tk(M) yields a multilinear map

τ̃ : Vec(M)× · · · ×Vec(M)︸ ︷︷ ︸
k times

→ C∞(M) (67)
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by τ̃(v1, . . . , vk)(p) := τp(v1(p), . . . , vk(p)). If the vector fields vi are given by
vµi ∂µ in local coordinates, then the function τ̃(v1, . . . , vk) is described in local
coordinates by the contraction

vµ1

1 · · · v
µk
k τµ1...µk .

Recall that Vec(M) is a module over the algebra C∞(M) of smooth func-
tions, meaning that the product fv of a smooth function f with a vector field
v is again a vector field. The map τ̃ is multilinear over the smooth functions,
meaning that

τ̃(v1, . . . , fvi, . . . vk) = f τ̃(v1, . . . , vi, . . . vk)

for all f ∈ C∞(M). In fact, one can show that every map τ̃ that is multilinear
over C∞(M) comes from a tensor field of rank k.

8.2.2 Transformation of covariant tensor fields

Let F : M → N be a smooth map. Then there is a pullback map F ∗ that takes
covariant tensor fields on N to covariant tensor fields on M . The pullback of
τ : N → Tk(N) is the tensor field F ∗τ : M → Tk(M) defined by

(F ∗τ)p(v1, . . . , vk) := τF (p)(F∗v1, . . . , F∗vk). (68)

Suppose that τ has coefficients τν1...νk(y1, . . . , ym) with respect to local coordi-
nates yν on N . If F has coordinate representation yν(x1, . . . , xn) with respect
to local coordinates xµ on M , then

(F ∗τ)µ1...µk =
(
∂yν1

∂xµ1

)
· · ·
(
∂yνk

∂xµk

)
τν1...νk . (69)

In particular, this shows that F ∗τ is smooth.

Problem 8.3. Show that (69) holds.

8.3 Symmetric and alternating covariant tensors

A covariant tensor τp is called symmetric if

τp(v1, . . . , vi, . . . , vj , . . . , vk) = τp(v1, . . . , vj , . . . , vi, . . . , vk), (70)

for all 1 ≤ i < j ≤ k, and alternating if

τp(v1, . . . , vi, . . . , vj , . . . , vk) = −τp(v1, . . . , vj , . . . , vi, . . . , vk). (71)

Accordingly, the coefficients of a symmetric tensor are invariant under permu-
tation,

τµ1...µi...µj ...µk = τµ1...µj ...µi...µk ,

whereas the coefficients of an alternating tensor satisfy

τµ1...µi...µj ...µk = −τµ1...µj ...µi...µk .
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We denote the vector spaces of symmetric and alternating tensors of rank k
at p ∈M by Sk(T ∗pM) and

∧k
(T ∗pM), respectively. The bundles

Sk(T ∗M) :=
⊔
p∈M

Sk(T ∗pM) and

k∧
(T ∗M) :=

⊔
p∈M

k∧
(T ∗pM)

are smooth manifolds, and the canonical projections

π :

k∧
(T ∗M)→M and π :

k∧
(T ∗pM)→M

are smooth. An alternating tensor field τ : M →
∧k

(T ∗M) is often called a
k-form.

An important example it the case k = 2. A covariant tensor of rank 2 is a
bilinear map τp : TpM × TpM → R, represented by the matrix τµν with respect
to a basis ∂µ of TpM . Symmetric tensors of rank 2 are symmetric bilinear forms
τp(v, w) = τp(w, v), represented by a symmetric matrix τµν = τνµ. Alternating
tensors of rank 2 are skew-symmetric bilinear forms τp(v, w) = −τp(w, v), which
are represented by a skew-symmetric matrix τµν = −τνµ.

Problem 8.4. An alternating tensor τ ∈
∧k

(T ∗pM) is determined by the co-

efficients τµ1...µk with 1 ≤ µ1 < . . . < µk ≤ n. It follows that
∧k

(T ∗pM) is of

dimension
(
n
k

)
.

Problem 8.5. A symmetric tensor τ ∈ Sk(T ∗pM) is determined by the coef-

ficients τµ1...µk with 1 ≤ µ1 ≤ . . . ≤ µk ≤ n. It follows that Sk(T ∗pM) is of

dimension
(
n+k−1

k

)
.

Problem 8.6 (Determinants and volume forms). An alternating tensor of rank
k = n is called a volume form.

a) The space
∧n

T ∗pM of volume forms has dimension 1. Every volume form
is a multiple of

τp(v1, . . . , vn) =
∑
σ∈Sn

sg(σ)v
σ(1)
1 · · · vσ(n)

n ,

where the sign sg(σ) of the permutation σ is +1 if σ is a product of an
even number of ‘swaps’, and −1 if σ is the product of an odd number of
swaps.

b) Let F : M →M be a smooth map with F (p) = p, and let τp be a nonzero
volume form at p. Then (F ∗τ)p = λτp for some λ ∈ R. This number is
independent of the choice of τp. In fact, it is the determinant of the linear
map F∗ : TpM → TpM ,

det(F∗) =
∑
σ∈Sn

sg(σ)
∂F 1

∂xσ(1)
· · · ∂F

n

∂xσ(n)
.
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8.4 Contravariant and mixed tensors

A linear functional αp : TpM → R is called a covector at p ∈M . The set T ∗pM
of covectors at p is a vector space of dimension n, called the cotangent space of
M at p. The basis ∂µ of TpM gives rise to the dual basis dxµ of T ∗pM defined
by

dxµ(∂ν) = δµν .

Every covector αp is determined by its values αµ := αp(∂µ) on the coordinate
basis, αp = αµdx

µ.
Since the basis ∂µ is related to the basis ∂µ by ∂µ = ∂xµ

∂xµ ∂µ, the bases dxµ

and dxµ are related by

dxµ =

(
∂xµ

∂xµ

)
dxµ. (72)

This motivates the suggestive notation dxµ for the dual coordinate basis. Note
that since covectors are precisely covariant tensors of rank 1, the cotangent
bundle T ∗M :=

⊔
p∈M T ∗pM is a smooth manifold.

Problem 8.7. Prove equation 72.

8.4.1 Contravariant tensors

A contravariant tensor of rank l at p is a multilinear map

τ : T ∗pM × . . .× T ∗pM︸ ︷︷ ︸
l times

→ R.

We denote the vector space of contravariant tensors of rank l at p by by T l(M)p.
By a line of reasoning similar to (59), every contravariant tensor of rank l is
determined by the nl real numbers

τν1...νl = τ(dxν1 , . . . , dxνl), (73)

the coefficients of τ with respect to the basis dxν of T ∗pM . Since the coefficients
of τ with respect to different coordinates are related by

τν1...νl =

(
∂xν1

∂xν1

)
· · ·
(
∂xνl

∂xνl

)
τν1...νl ,

the bundle T l(M) :=
⊔
p∈M T l(M)p is a smooth manifold of dimension n+ nl.

A smooth section τ : M → T l(M) of the canonical projection π : T l(M) → M
is called a contravariant tensor field of rank l.

Note that for l = 1, we have a canonical linear isomorphism TpM → T 1(M)p.
Every tangent vector vp ∈ TpM defines a linear functional T ∗pM → R by
αp 7→ αp(vp). We therefore identify T 1(M) with TM . In particular, a con-
travariant tensor field of rank 1 is just a vector field on M .
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8.4.2 Mixed tensors

A mixed tensor of rank (k, l) at p ∈M is a multilinear map

τp : TpM × . . .× TpM︸ ︷︷ ︸
k times

×T ∗pM × . . .× T ∗pM︸ ︷︷ ︸
l times

→ R.

We denote the space of mixed tensors at p by T lk(M)p. With respect to coordi-
nates xµ, a mixed tensor τ is given by the nk+l coefficients

τν1...νlµ1...µk
:= τ(∂µ1 , . . . , ∂µk , dx

ν1 , . . . , dxνl).

We identify a mixed tensor of rank (1, 1) with the linear map TpM → TpM
defined by vµ∂µ 7→ vµτνµ∂ν . More generally, a mixed tensor of rank (k, 1) can
be identified with the multilinear map

TpM × . . .× TpM︸ ︷︷ ︸
k times

→ TpM defined by (v1, . . . , vk) 7→ vµ1

1 · · · v
µk
k τνµ1...µk

∂ν .

Problem 8.8. The image of (v1, . . . , vk) is the unique vector v that satisfies
α(v) = τ(v1, . . . , vk, α) for all α ∈ T ∗pM . In particular, the above expression is
independent of the choice of basis.

The components of a mixed tensor transform as

τν1...νl
µ1...µk

=

(
∂xµ1

∂xµ1

)
· · ·
(
∂xµk

∂xµk

)
·
(
∂xν1

∂xν1

)
· · ·
(
∂xνl

∂xνl

)
· τν1...νlµ1...µk

. (74)

Using this, one shows that the bundle T lk(M) :=
⊔
p∈M T lk(M)p of mixed tensors

is a smooth manifold, with smooth canonical projection π : T lk(M) → M . A
smooth section τ : M → T lk(M) of the canonical projection is called a mixed
tensor field.

8.4.3 Pullback along diffeomorphisms

Unlike covariant tensor fields, contravariant and mixed tensor fields can only
be pulled back along diffeomorphisms. Let Φ: M → N be a diffeomorphism,
and let τ : N → T lk(N) be a mixed tensor field of rank (k, l) on N . Then the
pullback Φ∗τ : M → T lk(M) is defined by

(Φ∗τ)p(v1, . . . , vk;α1, . . . , αl) := τΦ(p)(Φ∗v1, . . . ,Φ∗vk; Φ−1 ∗α1, . . . ,Φ
−1 ∗αl).

The reason that this definition only works for diffeomorphisms is that although
the tangent vectors v1, . . . , vk ∈ TpM can be pushed forward along the map
Φ: M → N , the cotangent vectors α1, . . . , αl ∈ T ∗pM can only be pulled back.
For this, we need that the inverse map Φ−1 : N →M exists and is smooth.
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9 Riemannian geometry

We turn to the study of Riemannian geometry. Whereas the notion of a smooth
manifold allows us to deal with differentiability, the notion of a Riemannian
metric allows us to handle problems involving distances and angles in a nonlinear
setting.

9.1 Riemannian metrics

Let M be a manifold. An inner product on TpM is a symmetric, bilinear form
gp : TpM × TpM → R such that gp(v, v) > 0 for all nonzero v ∈ TpM .

Definition 9.1 (Riemannian metric). A Riemannian metric g on M is a co-
variant tensor field of rank 2 such that for every point p ∈M , the bilinear form
gp : TpM × TpM → R is an inner product.

A Riemannian manifold (M, g) is a smooth manifold equipped with a Rie-
mannian metric. On a Riemannian manifold, then, every tangent space TpM
comes equipped with an inner product gp that varies smoothly with p.

Example 9.2 (Euclidean metric on Rn). Let M = Rn, and let x1, . . . , xn be
the Cartesian coordinates on Rn. This choice of local coordinates allows us
to write v, w ∈ TpRn as v = vµ∂µ and w = wµ∂µ. The Euclidean metric on
M = Rn is given by

gEp (vµ∂µ, w
ν∂ν) = v1w1 + . . .+ vnwn.

9.1.1 Coordinate expressions

It will often be convenient to describe Riemannian metrics in local coordinates.
If v = vµ∂µ and w = wν∂ν are the coordinate expressions of v, w ∈ TpM with
respect to local coordinates xµ on Uα ⊆M , then

gp(v, w) = gµν(x)vµwν (75)

for an n × n matrix gµν(x) that depends smoothly on x ∈ φα(Uα). Since gp is
an inner product, the matrices gµν(x) are symmetric and positive definite,

gµν(x) = gνµ(x) and gµν(x)vµvν > 0

for all nonzero vectors (v1, . . . , vn) ∈ Rn.
For different coordinates xµ on Uβ ⊆ M , the functions gµν are related to

gµν on the overlap Uα ∩ Uβ by the covariant transformation rule

gµν =

(
∂xµ

∂xµ

)(
∂xν

∂xν

)
gµν . (76)
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Example 9.3. Consider the Euclidean metric gE on M = R2 (cf. example 9.2).
With respect to the Cartesian coordinates x, y on R2, it is given by(

gxx gxy
gyx gyy

)
=

(
1 0
0 1

)
.

In polar coordinates r, φ with x = r cos(φ) and y = r sin(φ), the 2× 2 Jacobian
matrix ∂xµ

∂xµ has entries(
∂x
∂r

∂y
∂r

∂x
∂φ

∂y
∂φ

)
=

(
cos(φ) sin(φ)
−r sin(φ) r sin(φ)

)
.

The coordinate transformation (76) therefore yields

grr =
∂x

∂r

∂x

∂r
gxx + 2

∂x

∂r

∂y

∂r
gxy +

∂y

∂r

∂y

∂r
gyy = 1,

gφφ =
∂x

∂φ

∂x

∂φ
gxx + 2

∂x

∂φ

∂y

∂φ
gxy +

∂y

∂φ

∂y

∂φ
gyy = r2,

grφ = gφr =
∂x

∂r

∂x

∂φ
gxx + 2

∂x

∂r

∂y

∂φ
gxy +

∂y

∂r

∂y

∂φ
gyy = 0.

A different (and shorter!) way to calculate the same result is by expressing
the coordinate vector fields ∂r, ∂φ in terms of ∂x and ∂y as

∂r = cos(φ)∂x + sin(φ)∂y

∂φ = −r sin(φ)∂x + r cos(φ)∂y

and calculate grr = g(∂r, ∂r), gφφ = g(∂φ, ∂φ), and grφ = gφr = g(∂r, ∂φ).

Problem 9.4. Let M = R3, let (Uα, φα) be the cartesian coordinates on Uα =
R3, and let (Uβ , φβ) be spherical coordinates on

Uβ = R3 \ {(x, y, z) ∈ R3 ; x = 0, y ≤ 0}.

The transition functions on Uα ∩ Uβ are then explicitly given by

x = ρ sin(θ) sin(φ), y = ρ sin(θ) cos(φ), and z = ρ cos(θ).

With respect to (Uα, φα), the Euclidean metric has coefficients gxx = gyy =
gzz = 1 and gxy = gyz = gxz = 0. Calculate the corresponding coefficients
gρρ, gθθ, gφφ and gρφ, gρθ, gφθ in spherical coordinates.

9.1.2 Infinitesimal length and angles

If (M, g) is a Riemannian manifold, then the inner product gp on TpM allows
us to define the lenght and angles at the level of tangent vectors. The lenght of
v ∈ TpM is defined as

‖v‖ :=
√
gp(v, v), (77)
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and the angle between v ∈ TpM and w ∈ TpM is defined by

θ = arccos

(
g(v, w)√

g(v, v)g(w,w)

)
. (78)

Example 9.5. The Poincaré disk is given by the open set

D2 := {(x, y) ∈ R2 ; x2 + y2 < 1},

with the metric gxx = gyy = 4/(1− x2 − y2)2, and gxy = gyx = 0. At the point
p = (x, y), the coordinate vector ∂x(p) has length

‖∂x‖ =
√
g(∂x, ∂x) =

√
gxx = 2/(1− x2 − y2).

Note that ‖∂x‖ approaches ∞ as x2 + y2 ↑ 1.

9.1.3 Pullback and isometries

Suppose that F : M → N is a smooth map, and that τ is a covariant ten-
sor of rank 2 on N . Recall from §8.2.2 that the pullback (F ∗τ)p(vp, wp) :=
τF (p)(F∗vp, F∗wp) is again a covariant tensor of rank 2 on M .

Proposition 9.6. Let g be a Riemannian metric on N , and let F : M → N be
a smooth map such that F∗ : TpM → TF (p)N is injective for all p ∈ M . Then
the pullback F ∗g is a metric on M .

Proof. We need to show that (F ∗g)p is an inner product, i.e., that (F ∗g)p(v, v) :=
gF (p)(F∗v, F∗v) > 0 for all nonzero v ∈ TpM . Since F∗v is nonzero if v
is nonzero, this follows from the fact that gF (p)(w,w) > 0 for all nonzero
w ∈ TF (p)N .

Definition 9.7 (Isometries). Let (M, g) and (N,h) be Riemannian manifolds.
An isometry is a diffeomorphism φ : M → N such that

g = φ∗h.

We call (M, g) and (N,h) isometric if they admit an isometry. Since the
infinitesimal length and angles with respect to gp on TpM then correspond to
the infinitesimal length and angles for hφ(p) on Tφ(p)N , we consider (M, g) and
(N,h) as ‘the same’ as far as their metric properties are concerned.

9.1.4 Musical isomorphisms

Recall that the cotangent space T ∗pM is the linear dual of TpM , and a covector
αp ∈ T ∗pM is a linear map αp : TpM → R. Using the inner product gp on TpM ,

we can assign to every vector v ∈ TpM the covector v[ ∈ T ∗pM with

v[(w) := gp(v, w), (79)
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yielding a linear isomorphism

TpM → T ∗pM : v 7→ v[. (80)

If the tangent vector v is given by v = vµ∂µ, then the coefficients of the covector
v[ are given by vµgµν , since v[ν = v[(∂ν) = g(v, ∂ν). Since coefficients of vectors
carry a superindex and coefficients of covectors carry a subindex, one often
simply writes

vν = gµνv
µ

for the coefficients of v[. We say that the metric gµν is used to lower the index.
Conversely, let α = ανdx

ν be a covector. Denote by gµν the inverse of the
matrix gµν , which has the property that gµσg

σν = δνµ. We can use gµν to raise

the index of αν by setting αµ := gµναν . The vector α] := αµ∂µ is the unique
vector in TpM that satisfies

α(w) = gp(α
], w) for all w ∈ TpM.

To see this, note that

gp(α
], w) = gµνα

µwν = gµνg
µσασw

ν = δσµασw
ν = ανw

ν .

The corresponding linear isomorphism

T ∗pM → TpM : α 7→ α], (81)

which maps α = ανdx
ν to α] = αµ∂µ, is of course inverse to (80).

Problem 9.8. Show that

gµνv
µwν = vνw

ν = vµwµ = gνµvνwµ .

Problem 9.9. The linear maps

TpM → T ∗pM : v 7→ v[ and T ∗pM → TpM : α 7→ α]

are inverse to each other. Can you explain the notation for these musical iso-
morphisms?

9.1.5 Metrics on embedded submanifolds

If (M, g) is a Riemannian manifold and Σ ⊆ M is an embedded submanifold,
then Σ is itself a Riemannian manifold in a natural way. The metric on Σ is
simply the pullback ι∗g of g along the canonical inclusion ι : Σ ↪→ M . Since
ι∗ : TσΣ → TσM is injective, this is indeed a Riemannian metric by Proposi-
tion 9.6.

This gives us a rich source of Riemannian manifolds. Indeed, since Rn comes
equipped with the Euclidean metric gE , every k-dimensional embedded subman-
ifold Σ ⊆ Rn comes with a natural metric ι∗gE . Since TσΣ can be identified with
a k-dimensional linear subspace of TσRn ' Rn, every tangent vector v ∈ TσΣ
can be written as v = (v1, . . . , vn) with respect to the cartesian coordinates on
Rn. The inner product ι∗gEσ (v, w) is then simply v1w1 + . . .+ vnwn.
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Example 9.10 (Round metric on the sphere). The n-sphere Sn is an embedded
submanifold of Rn+1, with n-dimensional tangent space

TpSn ' {v ∈ Rn+1 ; v ⊥ p}.

The round metric is the restriction ι∗gEσ of the Euclidean metric to the sphere,

ι∗gEσ (v, w) = v1w1 + . . .+ vn+1wn+1.

Figure 16: The round metric on the 2-sphere.

The following problem illustrates that although diffeomorphisms only care
about the ‘shape’ of a manifold, isometries also care about ‘size’.

Problem 9.11. Let S2
r be the sphere in R3 of radius r > 0. Show that the

diffeomorphism φ : S2
r → S2

R with φ(~x) = (R/r)(~x) is an isometry between S2
r

and S2
R if and only if r = R.

Problem 9.12. Let S2 be the unit sphere in R3 of radius 1. Recall from §2.3.1
that S2 is covered by two charts (U1, φ1) and (U2, φ2).

a) Determine the coefficients gµν of the round metric with respect to the

coordinates (x, y) = φ1(ξ, η, ζ) = ( ξ
1−ζ ,

η
1−ζ ) on S2 \ {(0, 0, 1)}.

b) Determine the coefficients gµν of the same metric with respect to the

coordinates (x, y) = φ2(ξ, η, ζ) = ( ξ
1+ζ ,

η
1+ζ ) on S2 \ {(0, 0,−1)}.

c) Recall from Problem 2.11 that the transition function between the two
charts is (x, y) = 1

x2+y2
(x, y). Check that gµν =

(
∂xµ

∂xµ

) (
∂xν

∂xν

)
gµν .

Problem 9.13 (Hyperbolic geometry). LetH = {(u, v, w) ∈ R3 ; u2 − v2 − w2 = 1}
be the hyperboloid in R3, and let H+ = {(u, v, w) ∈ H ; u ≥ 1} be a the upper
sheet of H. Let D = {(x, y) ∈ R2 ; x2 + y2 < 1} be the open unit disc.

a) Show that H+ is an embedded submanifold of R3.
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b) The line ` through (u, v, w) ∈ H+ and (−1, 0, 0) ∈ R3 intersects the plane
u = 0 in (0, x, y). Determine x and y as a function of (u, v, w), show
that (x, y) ∈ D, and show that the resulting stereographic projection
φ : H+ → D is a smooth map.

c) For (x, y) ∈ D, the line ` through (−1, 0, 0) ∈ R3 and (0, x, y) ∈ R3

intersects H+ in (u, v, w). Determine (u, v, w) as a function of (x, y), and
show that ψ(x, y) = (u, v, w) is a smooth map D → H+. Conclude that
ψ : D → H+ is a diffeomorphism.

d) Let η be the covariant tensor field of rank 2 defined in cartesian coordinates
by ηuu ηuv ηuw

ηvu ηvv ηvw
ηwu ηwv ηww

 =

−1 0 0
0 1 0
0 0 1

 .

It is sometimes called the Minkowski metric on R3. Calculate the compo-
nents (

ψ∗ηxx ψ∗ηxy
ψ∗ηyx ψ∗ηyy

)
of the tensor ψ∗η with respect to the cartesian coordinates (x, y) on D.

e) Let ι : H+ ↪→ R3 be the inclusion of H+ into R3. Show that (H+, ι∗η)
is a Riemannian manifold which is isometric to the Poincaré disc (D, g).
Explain the name “hyperbolic geometry” for the geometry of the Poincaré
disc.

9.2 Length

Let [a, b] be a closed interval. Then a curve γ : [a, b] → M is called regular if
it is the restriction to [a, b] of a smooth curve with γ̇(t) 6= 0 for t ∈ [a, b]. The
curve γ is called piecewise regular if there exists a finite subdivision a = a0 <
a1 < . . . < aN = b such that each γ|[ai,ai+1] is regular.

Figure 17: A piecewise smooth curve in R2.
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Just like for curves in Rn, we define the length of γ by

L(γ) :=

∫ b

a

‖γ̇(t)‖dt , (82)

where ‖γ̇(t)‖ :=
√
gγ(t)(γ̇(t), γ̇(t)).

The length of a curve does not depend on the parameterization. Indeed,
suppose that γ̃ = γ ◦ φ for a piecewise smooth reparameterization φ : [c, d] →
[a, b] which is either increasing or decreasing. Then the chain rule yields

˙̃γ(t) = γ̇(φ(t))φ′(t),

so that

L(γ̃) =

∫ d

c

‖ ˙̃γ(t)‖dt =

∫ d

c

‖γ̇(φ(t))‖|φ′(t)|dt =

∫ b

a

‖γ̇(s)‖ds = L(γ).

For embedded submanifolds Σ ⊆ Rn with the Euclidean metric, this coin-
cides with the usual definition of length.

Example 9.14. Let S2
r be the 2-sphere of radius r with the round metric, and

let γ : [0,Θ]→ S2 be the curve

γ(t) := (r cos(t), r sin(t), 0).

Then L(γ) =
∫ Θ

0
‖γ̇(t)‖dt =

∫ Θ

0
‖(−r sin(t), r cos(t), 0)‖dt = rΘ.

Example 9.15. LetD2 be the Poincaré disk from Example 9.5, and let γ : [0, r]→
D2 be the curve γ(t) = (t, 0). Note that with respect to the metric on D2, this
is not a path of constant speed. Indeed, at (x, y) = (t, 0), the tangent vector
γ̇(t) = ∂x has length 2/(1− t2). It follows that

L(γ) =

∫ r

0

‖∂x‖dt =

∫ r

0

2/(1− t2)dt = log

(
1 + r

1− r

)
.

To make γ : [a, b] → M into a path of constant speed, we can always
reparametrize by the arc length

s(t) :=

∫ t

a

‖γ̇(t)‖dt.

Indeed, if γ is regular, then ds/dt = ‖γ̇(t)‖ 6= 0, so the strictly increasing
function s(t) has a smooth, strictly increasing inverse t(s). Then γ̃(s) := γ(t(s))
is a unit speed parameterization, since d

ds γ̃(s) = ‖γ̇(t(s))‖(dt/ds) = 1.

Problem 9.16. Calculate the unit speed parameterization of the curve in Ex-
ample 9.14.

Problem 9.17. Show that the unit speed reparameterization of the path in
Example 9.15 is (x(s), y(s)) = ( e

s−1
es+1 , 0).
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a) Use s(t) = log((1 + t)/(1− t)) to calculate t(s).

b) Calculate γ̃(s) := γ(t(s)), and check that its speed ‖ ˙̃γ(s)‖ of γ̃(s) :=
γ(t(s)) is indeed 1.

c) Conclude that γ approaches the boundary of the disk in finite time, but
with infinite speed. On the other hand γ̃ has unit speed, but it needs an
infinite amount of time to reach the boundary.

Definition 9.18. The distance d(p, q) between two points p and q on M is
defined as

d(p, q) := inf{L(γ) ; γ(a) = p and γ(b) = q}, (83)

where the infimum is taken over all piecewise regular curves γ : [a, b]→M that
start at p and end at q.

Proposition 9.19. For a Riemannian manifold, the distance d : M ×M → R+

is a metric.

Proof. If γ is a path from p to q, then then γ(−t) is a path from q to p with the
same length. It follows that d(p, q) = d(q, p).

If γ1 : [a1, b1]→M is a path from p to x and γ2 : [a2, b2]→M is a path from
x to q, then the concatenated path from p to q via x, defined by

γ2 ∗ γ1 :=

{
γ1(t) for t ∈ [a1, b1]

γ2(t− b1 + a2) for t ∈ [b1, b1 + b2 − a2],

has length L(γ1) + L(γ2). It follows that d(p, q) ≤ d(p, x) + d(x, q).
Finally, we show that d(p, q) = 0 implies p = q. Suppose that p 6= q. Let

Uα ⊆M be a coordinate neighbourhood of p, and let Bε be a closed coordinate
ball centered at φα(p) which does not contain φα(q). We prove that there exist
constants C1, C2 > 0 such that for all v ∈ TM with φα(π(v)) ∈ Bε,

C1

√
(v1)2 + . . .+ (vn)2 ≤ ‖v‖g ≤ C2

√
(v1)2 + . . .+ (vn)2. (84)

Once we have proven (84), we can conclude that d(p, q) > C1ε. Indeed, the
length with respect to g of a path from p to q is at least C1 times the Euclidean
length of any segment of the path – or at least of the segment of the path that
stays within φα(Bε). Since the path eventually leaves the coordinate ball, its
Euclidean length must be at least ε, so

d(p, g) = inf{L(γ) ; γ(a) = p, γ(b) = q} ≥ C1ε .

Since ‖λv‖g = |λ|‖v‖g for all λ ∈ R, it suffices to prove (84) for vectors of
Euclidean length (v1)2 + . . .+ (vn)2 = 1. Let

Bε × Sn ⊆ Rn × Rn

be the set of coordinates of such vectors, with the additional condition that
their base point lies in the coordinate ball. Since the length ‖v‖g =

√
gµνvµvν

84



with respect to the other metric g is a smooth, positive map on the compact set
Bε × Sn, it has a minimum value C1 > 0 and a maximum value C2 > 0. Since
C1 ≤ ‖v‖g ≤ C2 for vectors of Euclidean length 1, we have (84) for vectors of
arbitrary length.

If φ : M → N is an isometry between (M, g) and (N,h), then the length
with respect to g of γ : [a, b] → M is the same as the length with respect to h
of φ∗γ : [a, b]→ N . Indeed, since ‖φ∗v‖h = ‖v‖g for all v ∈ TM , we have

L(φ∗γ) =

∫ b

a

‖ ddtφ(γ(t))‖hdt =

∫ b

a

‖φ∗γ̇(t)‖hdt =

∫ b

a

‖γ̇(t)‖gdt = L(γ).

In particular, d(φ(p), φ(q)) = d(p, q). An isometry of Riemannian manifolds is
therefore also an isometry of the corresponding metric spaces.

Remark 9.20 (Metrizability). If g is a Riemannian metric on a manifold M ,
then the corresponding metric d induces a metric topology on M , cf. Def. A.15.
Using the estimate (84), one can show that this metric topology is homeomor-
phic to the original topology on M (see [L97, Thm. 13.29] for details). In
particular, M is metrizable as a topologial space, meaning that there exists a
metric whose open balls generate the topology. Since every smooth manifold
admits a Riemannian metric (see [L97, Prop. 13.3]), it follows that every smooth
manifold is metrizable as a topological space.

9.3 The geodesic equation

For a Riemannian manifold (M, g), we are interested in the shortest path γ
between a pair of points p, q ∈M . Since the length of a path is invariant under
reparametrization, we may as well assume that our paths are parametrized by
arc length. A geodesic is a curve γ with speed 1 which is locally the shortest
path between all the points that it connects.

Since γ moves at unit speed, the length of the curve segment from t to t′ is

L(γ|[t,t′]) =

∫ t′

t

‖γ̇‖dt = |t′ − t|.

It follows that γ|[t,t′] is the shortest path from γ(t) to γ(t′) if and only if
d(γ(t), γ(t′)) = |t′ − t|.

Definition 9.21 (Geodesics). A geodesic on M is a piecewise regular curve
γ : [a, b] → M with unit speed ‖γ̇(t)‖ = 1, such that for all t0 ∈ [a, b], there
exists an open interval I ⊆ [a, b] around t0 with

d(γ(t), γ(t′)) = |t− t′| (85)

for all t, t′ ∈ I.
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Example 9.22. The curve γ : R→ S2 with γ(t) = (cos(t), sin(t), 0) is a geodesic
on S2 with respect to the round metric. As long as |t′ − t| < π, the curve γ|[t,t′]
is the shortest path from γ(t) to γ(t′). For |t− t′| = π, this curve is a shortest
path. And for |t′ − t| > π, it is no longer a shortest path.

Theorem 9.23 (Geodesic equation). Every geodesic is regular. In local coor-
dinates, it satisfies the second order ODE

γ̈µ + Γµστ γ̇
σγ̇τ = 0, (86)

with the so-called Christoffel symbols Γµστ given by

Γµστ = 1
2 g

µα(∂σgτα + ∂τgασ − ∂αgστ ). (87)

This is a central result in geometry because it gives us insight into the nature
of geodesics. For example, since they are solutions to a second order ODE, they
are locally determined by their initial position and velocity alone! But perhaps
more importantly, the variational techniques in the proof are ubiquitous not just
in geometry, but also in other areas of mathematics and mathematical physics.

The idea of this variational principle is the following. If γ is the shortest
path from p to q, we can deform the path a little bit while keeping the endpoints
fixed. This yields a 1-parameter family of paths γε : [a, b]→M , where γ0 = γ is
the original path γ and the paths γε approach γ as ε tends to zero. Since γ0 is
the shortest of the paths γε from p to q, the function ε 7→ L(γε) has a minimum
at ε = 0. We thus have d

dεL(γε) = 0. This yields an integral equation for γ(t)

involving the infinitesimal deformation δγ(t) := d
dεγε(t) in Tγ(t)M . From the

fact that this integral equation must hold for all variations δγ that vanish at
the endpoints, we then obtain the geodesic equation.

In general, a (partial) differential equation obtained in this manner is called
Euler–Lagrange equation. Interestingly, dynamical equations in physics are vir-
tually always Euler–Lagange equations.

Proof. Choose a subdivision a = a0 < a1 < . . . < an = b such that the restric-
tion of γ to every interval [ai, ai+1] is regular, γ([ai, ai+1]) lies entirely within a
coordinate neighbourhood Uαi , and, most importantly, γ is is the shortest path
from γ(ai) to γ(ai+1).

In local coordinates, the length of γ|[ai,ai+1] is given by

L(γ|[ai,ai+1]) =

∫ ai+1

ai

√
gµν(γ(t))γ̇µγ̇νdt.

Let γε(t) : [a, b]→ M be a regular path that starts and ends at the same point
as γ, and whose restriction to [ai, ai+1] has coordinate expression

γµε (t) = γµ(t) + εδγµ(t)

for some smooth map δγµ : [ai, ai+1]→ Rn. We view this as a smooth deforma-
tion of γ0(t) = γ(t) in the direction of δγ(t).
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If δγµ(ai) = δγµ(ai+1) = 0, then the starting point γε(ai) and the endpoint
γε(ai+1) are fixed. Since γ is the shortest path from γ(ai) to γ(ai+1), the smooth
map ε 7→ L(γε|[ai,ai+1]) has a minimum at ε = 0. It follows that

d

dε

∣∣∣
ε=0
L
(
γε|[ai,ai+1]

)
=

∫ ai+1

ai

d

dε

∣∣∣
ε=0

√
gµν(γε(t))γ̇

µ
ε γ̇νε dt = 0. (88)

For brevity, we will write gµν instead of gµν(γ(t)) in the following. Since ‖γ̇0‖ =√
gµν γ̇µγ̇ν = 1, we have

d

dε

∣∣∣
ε=0

√
gµν(γε(t))γ̇

µ
ε γ̇νε = 1

2

(
(∂αgµν)γ̇µγ̇νδγα + gµνδγ̇

µγ̇ν + gµν γ̇
µδγ̇ν

)
. (89)

By partial integration, we find∫ ai+1

ai

(
gµν γ̇

µ
)
d
dtδγ

νdt = −
∫ ai+1

ai

d
dt

(
gµν γ̇

µ
)
δγνdt+

[
gµν γ̇

µ(t)δγν(t)
]ai+1

ai
. (90)

If δγ(ai) = δγ(ai+1) = 0, the last term in (90) vanishes. Note that in (89),
the last two terms are equal, gµνδγ̇

µγ̇ν = gµν γ̇
µδγ̇ν . Integrating (89) and

substituting (90) for the last two terms, we find

0 =

∫ ai+1

ai

(
1
2 (∂αgµν)γ̇µγ̇ν − d

dt

(
gµαγ̇

µ
))
δγαdt. (91)

Since this is true for every choice of δγα vanishing at ai and ai+1, we obtain
the Euler–Lagrange equation

0 = 1
2 (∂αgµν)γ̇µ(t)γ̇ν(t)− d

dt

(
gµαγ̇

µ(t)
)
. (92)

Indeed, if we write Aα(t) for the right hand side of (92) and choose δγα := Aα(t),
then (91) yields

∫ ai+1

ai

∑n
α=1 |Aα(t)|2 = 0, so the continuous function Aα(t) must

be zero for all t ∈ [ai, ai+1].
The Euler–Lagrange equation (92) is equivalent to the geodesic equation (86).

To derive the latter, use d
dtgµα(γ(t)) = ∂νgµαγ̇

ν to find

d

dt
(gµαγ̇

µ) = gµαγ̈
µ + ∂νgµαγ̇

µγ̇ν = gµαγ̈
µ + 1

2

(
∂νgµαγ̇

µγ̇ν + ∂µgαν γ̇
µγ̇ν

)
,

where the last step is the relabelling µ ↔ ν of indices. The Euler–Lagrange
equation (92) is therefore equivalent to

gαµγ̈
µ + 1

2 (∂νgµα + ∂µgαν − ∂αgµν) γ̇ν γ̇µ = 0. (93)

Contracting this with the inverse matrix gσα yields

γ̈σ + 1
2g
σα (∂νgµα + ∂µgαν − ∂αgµν) γ̇ν γ̇µ = 0,

which is precisely the geodesic equation (86) if we substitute σ ↔ µ and τ ↔ ν.
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To see what happens at the points ai, we repeat the argument for the whole
interval [a, b], with δγ(a) = 0 and δγ(b) = 0, but with δγ(ai) 6= 0 for i =
1, . . . , n − 1. Taking into account the boundary terms in (90) and summing
from i = 0 to i = n, we find

0 =

n−1∑
i=1

gai(γ̇−(ai)− γ̇+(ai), δγ(ai)).

Since this is zero for all choices of δγ(ai), we conclude that the left and right
limits γ̇−(ai) and γ̇+(ai) of γ̇ at ai are equal, so the coordinate coefficients γµ are
continuously differentiable around ai. It follows that on the entire interval [a, b],
the curve γ is a C1 solution to a second order ODE with smooth coefficients, so
it must be smooth at ai as well.

Example 9.24. Let D2 be the Poincaré disk from Example 9.5, with the metric(
gxx gxy
gyx gyy

)
=

(
4

(1−x2−y2)2 0

0 4
(1−x2−y2)2

)
.

Since this is a diagonal matrix, the inverse matrix is easily computed:(
gxx gxy

gyx gyy

)
=

(
(1−x2−y2)2

4 0

0 (1−x2−y2)2

4

)
.

In order to compute the Christoffel symbols Γµστ , we need the partial derivatives
of the metric. With r2 = x2 + y2, we have ∂xgxy = ∂ygxy = 0, and

∂xgxx =
16x

(1− r2)3
∂xgyy =

16x

(1− r2)3

∂ygxx =
16y

(1− r2)3
∂ygyy =

16y

(1− r2)3
.

To calculate the Christoffel symbol Γxxy, we have

Γxxy = 1
2g
xx(∂xgxy + ∂ygxx − ∂xgxy) + 1

2g
xy(∂xgyy + ∂ygxy − ∂ygxy)

= 1
2g
xx∂ygxx =

2y

1− r2
.

The other Christoffel symbols are calculated in a similar fashion:(
Γxxx Γxxy
Γxyx Γxyy

)
=

( 2x
1−r2

2y
1−r2

2y
1−r2

−2x
1−r2

)
,

(
Γyxx Γyxy
Γyyx Γyyy

)
=

( −2y
1−r2

2x
1−r2

2x
1−r2

2y
1−r2

)
.

The geodesic equation for γ(t) = (x(t), y(t)) then reads

ẍ+ Γxxxẋ
2 + 2Γxxyẋẏ + Γxyy ẏ

2 = 0

ÿ + Γyxxẋ
2 + 2Γyxyẋẏ + Γyyy ẏ

2 = 0,
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so we obtain

ẍ+
2

1− r2

(
xẋ2 + 2yẋẏ − xẏ2

)
= 0

ÿ +
2

1− r2

(
−yẋ2 + 2xẋẏ + yẏ2

)
= 0.

In Problem 9.17, we saw that (x(s), y(s)) = ( e
s−1
es+1 , 0) is a regular path of unit

speed. It is even a geodesic. Since y = ẏ = 0, the geodesic equation reduces to

ẍ+ 2xẋ2

1−x2 = 0, which is indeed satisfied by x(s) = es−1
es+1 = tanh(s/2).

Problem 9.25 (Geodesics of S2). Prove that on S2 with the round metric g,
the geodesics are precisely the great circles.

a) A part of the sphere can be described by spherical coordinates (φ, θ).
Calculate the coefficients (

gφφ gφθ
gθφ gθθ

)
for the round metric g in these coordinates, and calculate its inverse matrix(

gφφ gφθ

gθφ gθθ

)
.

b) Show that ∂θgφφ is the only nonzero partial derivative among the ∂αgβγ ,
and calculate the Christoffel symbols Γµστ .

c) Let γ(t) = (cos(t), sin(t), 0) be the unit speed parameterization of the
meridian. In spherical coordinates this curve is described by (φ(t), θ(t)) =
(t, π/2). Derive the geodesic equation for the sphere, and show that it is
satisfied by this curve.

d) Now let γ′(t) be any great circle on S2, parameterized by arc length. Find
coordinates (φ′, θ′) in which γ′(t) is given by (φ′(t), θ′(t)) = (t, π/2), and
show that γ′(t) is a geodesic. (This should not take more than two lines
of text and a sketch.)

e) Let γ(t) be a geodesic. Let γ′(t) be the unique great circle with γ(0) =
γ′(0) and d

dtγ(0) = d
dtγ
′(0). Use the uniqueness of solutions to second

order ODE’s to show that γ = γ′.

f) Conclude that the geodesics on S2 are precisely the great circles parame-
terized by arc length.

The following problem was posed by Johann Bernouilli in 1696.

Problem 9.26 (The Brachistochrone). Suppose that a particle of mass m
moves in R2 under the influence of a gravitational potential V (x, y) = −gy. If it
traverses a curve γ(s) = (x(s), y(s)) with γ(0) = γ̇(0) = (0, 0), then its kinetic
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energy at γ(s) = (x(s), y(s)) is 1
2m‖γ̇‖

2 = mgy, so its speed is ‖γ̇(s)‖ =
√

2gy.
The total time it takes to move along γ from γ(si) to γ(sf ) is therefore

T =

∫ sf

si

1√
2gy

√
ẋ2 + ẏ2ds.

a) The brachistochrone is the path γ that minimizes the travel time T . Show
that the brachistochrone satisfies

d

ds

(
ẋ√

y(ẋ2 + ẏ2)

)
= 0 (94)

d

ds

(
ẏ√

y(ẋ2 + ẏ2)

)
= −1

2

√
ẋ2 + ẏ2

y3/2
. (95)

b) The cycloid is the path that a point on a rigid circle traverses if the circle
rolls over the x-axis without slipping. Show that for a circle with radius
r, the cycloid is given by γ(s) = (x(s), y(s)) with

x(s) = r(s− sin(s))

y(s) = r(1− cos(s)).

c) Show that the cycloid satisfies (94) and (95).

Problem 9.27 (Isometries preserve geodesics). Let φ : M → N be an isometry
from (M, gM ) to (N, gN ).

a) Show that L(φ◦γ) = L(γ) for every piecewise regular path γ : [a, b]→M .

b) The path γ is a geodesic in M if and only if φ ◦ γ is a geodesic in N .

Problem 9.28 (Geodesics of the Poincaré disc). Recall from Problem 9.13
that the Poincaré disc (D, g) is isometric to the upper sheet H+ = {(u, v, w) ∈
R3 ; u2 − v2 − w2 = 1, u ≥ 1} of the hyperboloid in R3, equipped with the
pullback g = ι∗η of the Minkowski metric.

a) The orthochronous Lorentz group O↑(1, 2) from Problem 1.14 acts by
isometries on H+.

b) This induces an action of O↑(1, 2) on TH+ by pushforward, g · v = g∗v.
This action is transitive on the unit vectors {v ∈ TH+ ; g(v, v) = 1}.

c) Let g ∈ O↑(1, 2). Using Problem 9.27 or otherwise, show that if t 7→ γ(t)
is a geodesic in H+, then so is t 7→ gγ(t).

d) Conclude that O↑(1, 2) acts transitively on the geodesics.

e) The intersection of H+ with the plane P0 defined by w = 0 is (the image
of) a geodesic.
Hint: consider the image under the reflection R(u, v, w) = (u, v,−w) of the
unique geodesic through (1, 0, 0) ∈ H+ in the direction (0, 1, 0) ∈ T1,0,0H

+.
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f) Every plane P through the origin in R3 that intersects H+ is of the form
P = g(P0) for an element g ∈ O↑(1, 2).

g) Every geodesic in H+ has as image the intersection of H+ with a plane
through the origin.

h) By rotating around the u-axis, every plane through the origin that in-
tersects H+ is of the form u = λv for some λ > 1. The corresponding
geodesic is then given by the equations u2 − v2 − w2 = 1, u = λv. Its
image under the isometry φ : H+ → D from Problem 9.13b is given by
the segment of the circle (x − λ)2 + y2 = λ2 − 1 that lies within D. It
intersects x2 + y2 = 1 at a right angle.

9.4 The Levi–Civita connection

The requirement that γ be a geodesic is, of course, entirely independent of the
coordinates that one chooses to describe it. In our derivation of the geodesic
equation, however, we made rather extensive use of local coordinates. In par-
ticular the Christoffel symbols Γµστ we discovered depend very much on the
coordinates one chooses. We are led to wonder whether all Christoffel symbols
together – each one defined in its own coordinate neighbourhood – might rep-
resent a coordinate-independent object defined on all of M . This is indeed the
case, and this object is called the Levi–Civita connection.

Just like a vector field is a rule for differentiating functions, a connection
is a rule for differentiating vector fields. A connection assigns to every pair of
vector fields v, w ∈ Vec(M) the vector field ∇vw ∈ Vec(M), called the covariant
derivative of w along v.

Definition 9.29 (Connections). A connection is a bilinear map

∇ : Vec(M)×Vec(M)→ Vec(M),

denoted (v, w) 7→ ∇vw, such that

∇fvw = f∇vw, and (96)

∇v(fw) = f∇vw + v(f)w (97)

for all f ∈ C∞(M) and for all v, w ∈ Vec(M).

The second condition (97) is a Leibniz rule, which is what one expects since
w is being differentiated. Note that the first condition (96) is not a Leibniz
rule; it expresses that the covariant derivative (∇vw)p at the point p ∈M only
depends on the value vp ∈ TpM of the vector field v at p, and not on any of its
derivatives.

If ∇vw = 0, then we say that w is covariantly constant in the direction
of v. Note that without a connection, the statement that a vector field w is
constant does not make coordinate-invariant sense. For instance, the vector field
w = ∂φ appears to be constant when viewed in polar coordinates r, φ. But the
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same vector field w = x∂y − y∂x has nonconstant coefficients when expressed
in Cartesian coordinates x, y! Essentially, the reason that we cannot decide
whether w is constant or not, is that we cannot compare vectors wp ∈ TpM
and wp′ ∈ Tp′M at different points p, p′ ∈ M to see if they are ‘the same’. By
telling us what it means for a vector field w to be constant in the direction of
v, a connection ‘connects’ the tangent spaces TpM at different points p in M .

Example 9.30. Let∇ be a connection on an open subset U ⊆ Rn. Then we can
express ∇∂σ∂τ (the covariant derivative of ∂τ along ∂σ) in terms of coordinate
vector fields as

∇∂σ∂τ = Aµστ∂µ. (98)

The smooth functions Aµστ on U completely determine the connection ∇. In-
deed, we can calculate ∇vw in terms of Aµστ as follows:

∇vw = ∇vσ∂σ (wτ∂τ )

= (vσ∂σw
τ )∂τ + wτ∇vσ∂σ∂τ (by the Leibniz rule (97))

= (vσ∂σw
τ )∂τ + vσwτ∇σ∂τ (by equation (96))

= (vσ∂σw
µ)∂µ + vσwτAµστ∂µ

= vσ(∂σw
µ +Aµστw

τ )∂µ.

In particular, this formula shows that at p ∈ U , the value (∇vw)p ∈ TpM of the
covariant derivative of w along v depends only on:

• the value of the coefficients vσp of the vector field v at p

• the value of the coefficients wτp of the vector field w at p

• the derivative vσp ∂σw
τ
p of the coefficients of w in the direction of v at p.

Note the lack of symmetry between v and w.

Proposition 9.31. A connection ∇ on M restricts to a connection ∇|U on any
open subset U ⊆M .

Proof. Let v, w ∈ Vec(U), and let p ∈ U . To define ∇vw at the point p ∈
U , choose a bump function φ ∈ C∞(M) with φ(p′) = 1 for p′ in an open
neighbourhood V ⊆ U of p, and φ(p′) = 0 for p′ /∈ U (see Lemma 7.4). This
allows us to define ((∇|U )vw)p := (∇φv(φw))p. One checks that the definition
of ((∇|U )vw)p does not depend on the choice of φ, and that ∇|U is indeed a
connection on U .

Problem 9.32. Check that the definition of ((∇|U )vw)p does not depend on
the choice of φ, and that ∇|U is indeed a connection on U .

In view of Proposition 9.31 and Example 9.30, a connection ∇ is completely
described by its coordinate functions Aµστ with respect a collection of charts
(Uα, φα) that cover M . The transformation behaviour of the coordinate func-
tions Aµστ is a bit awkward, and involves derivatives of the Jacobi matrix.
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Problem 9.33 (Transformation behaviour of Aµστ ). Show that

Aµστ =
∂

∂xσ

(∂xµ
∂xτ

)(∂xµ
∂xµ

)
+
(∂xµ
∂xµ

)(∂xσ
∂xσ

)(∂xτ
∂xτ

)
Aµστ .

One way to do this is to express ∇vw in the two different coordinate systems
as ∇vw = (vσ∂σw

µ + Aµστv
σwτ )∂µ and ∇vw = (vσ∂σw

µ + Aµστv
σwτ )∂µ. Then

use the transformation formulæ for vσ, wµ, and ∂µ.

9.4.1 Torsion-free connections

Recall from §6.3 that we already have a way to determine the derivative of a
vector field w along the flow of a vector field v, namely the Lie bracket

[v, w](f) := v(w(f))− w(v(f)). (99)

The most important difference between the Lie bracket [v, w] and the covariant
derivative ∇vw is that ∇vpw is well defined if we only know the value of the
vector field v at p, whereas the Lie bracket [v, w] at p uses both the value and
the derivative of v.

The connection ∇ is called torsion-free if

[v, w] = ∇vw −∇wv. (100)

More generally, T (v, w) := ∇vw − ∇wv − [v, w] is called the torsion of the
connection, but we will only consider torsion-free connections in these notes.

Remark 9.34. Equations (99) and (100) are similar in the sense that the Lie
bracket is expressed as a difference of operators involving v and w. An important
difference is that in (100), each of the two terms on the right hand side is a vector
field, whereas in (99), the difference is a vector field but the two individual terms
are not vector fields.

9.4.2 Metric-preserving connections

If (M, g) is a Riemannian manifold, it is natural to impose the following com-
patibility condition.

Definition 9.35. A connection ∇ on a Riemannian manifold (M, g) is called
metric preserving if for all u, v, w ∈ Vec(M),

u(g(v, w)) = g(∇uv, w) + g(v,∇uw). (101)

If one blindly applies the chain rule on the left hand side of (101), one may
expect to find an extra term (∇ug)(v, w) involving the derivative of the metric
g along u. This term being absent, we can consider g to be constant as far as
∇ is concerned. Hence the name ‘metric preserving connection’.

Although connections are plentiful, the requirement that ∇ be both torsion-
free and metric-preserving is quite restrictive. In fact, for every Riemannian
manifold there exists a unique connection with these properties. It is called the
Levi-Civita connection.
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Proposition 9.36 (Levi-Civita connection). For every Riemannian manifold
(M, g), there is a unique connection that is both torsion-free and metric-preserving.

Proof. Since ∇ is torsion-free, we have ∇∂σ∂τ − ∇∂τ∂σ = [∂σ, ∂τ ] = 0. If we
write Dσ for the covariant derivative ∇∂σ along ∂σ, then this becomes

Dσ∂τ = Dτ∂σ. (102)

Since ∇ is metric-preserving, we have the following expressions for ∂σgατ , ∂τgσα
and ∂αgστ .

∂σg(∂α, ∂τ ) = g(Dσ∂α, ∂τ ) + g(∂α, Dσ∂τ )

∂τg(∂σ, ∂α) = g(Dτ∂σ, ∂α) + g(∂σ, Dτ∂α)
::::::::::

∂αg(∂σ, ∂τ ) = g(Dα∂σ, ∂τ ) + g(∂σ, Dα∂τ )
::::::::::

By (102) and the symmetry of g, the marked expressions in the above formulæ
are equal. With Dσ∂τ = Aνστ∂ν , it follows that

∂σgατ + ∂τgσα − ∂αgστ = 2g(∂α, A
ν
στ∂ν) = 2gανA

ν
στ ,

and hence, since gµαgανA
ν
στ = Aµστ , that

Aµστ =
1

2
gµα(∂σgατ + ∂τgσα − ∂αgστ ).

In other words, the coefficients of the Levi-Civita connection are precisely the
Christoffel symbols! Since the coefficients Aµστ = Γµστ determine the connection
completely, the connection is unique.

By Problem 9.33, the Christoffel symbols transform as

Γµστ =
∂

∂xσ

(∂xµ
∂xτ

)(∂xµ
∂xµ

)
+
(∂xµ
∂xµ

)(∂xσ
∂xσ

)(∂xτ
∂xτ

)
Γµστ .

Note that this involves second derivatives of the transition functions.

Problem 9.37 (The gradient). Let (M, g) be a Riemannian manifold, and
let h : M → R be a smooth function. The gradient of h in p is defined as
the unique vector gradp(h) ∈ TpM with gp(vp, gradp(h)) = vp(h) for all vp ∈
TpM . Determine the coefficients of gradp(h) in local coordinates, and show that
grad(h) is a smooth vector field on M .

Problem 9.38 (The Brachistochrone in Riemannian geometry). Let (M, g) be
a Riemannian manifold, and let h : M → R>0 be a smooth function.

a) Let ∇ be a connection on M . Show that ∇̃ : Vec(M)×Vec(M)→ Vec(M)
defined by

∇̃uv = ∇uv +
1

2h

(
g(u, grad(h))v + g(v, grad(h))u− g(u, v)grad(h)

)
is again a connection.
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b) The metric g̃ = hg onM is defined by pointwise multiplication, g̃p(vp, wp) :=
h(p)gp(vp, wp). Show that if ∇ is the Levi-Civita connection for g, then

∇̃ is the Levi-Civita connection for g̃.

c) If a particle moving on M is constrained to have speed c(p) > 0 at p ∈M ,
then the time it takes to traverse a (regular) curve γ : [si, sf ]→M is

T =

∫ sf

si

1

c(γ(s))

√
gγ(s)(γ̇(s), γ̇(s))ds.

A curve which minimizes the travel time T is called a brachistochrone.
Show that a brachistochrone γ satisfies

∇γ̇ γ̇ =
1

c

(
2

(
d

ds
c(γ(s))

)
γ̇(s)− g(γ̇, γ̇)grad(c)

)
.

d) Explain how this pertains to Problem 9.26.

Problem 9.39 (Covariant derivatives). Let τ be a covariant tensor field of rank
k on M , and let ∇ be a connection. For w, v1, . . . , vk ∈ Vec(M), we define the
covariant derivative

∇wτ(v1, . . . , vk) := Lwτ(v1, . . . , vk)−
k∑
i=1

τ(v1, . . . ,∇wvi, . . . , vk).

a) Show that this expression is C∞(M)-linear in all k + 1 arguments:

∇gwτ(f1v1, . . . , fkvk) = gf1 · · · fk∇wτ(v1, . . . , vk)

for all g, f1, . . . , fk ∈ C∞(M).

b) Express τµ1...µk;ν := ∇∂ν τ(∂µ1
, . . . , ∂µk) in terms of the partial derivatives

∂ντσ1,...,σk of the coefficient functions of the tensor τ , and the coordinate
functions Aσµν of the connection ∇.

c) Express ∇wτ(v1, . . . , vk) in terms of the functions τµ1...µk;ν , and the coor-
dinate coefficients wν , vµ1

1 , . . . , vµkk of the vector fields. Conclude that ∇τ
is a covariant tensor field of rank k + 1.

d) Let g be a Riemannian metric, and ∇ the corresponding Levi-Civita con-
nection. Then ∇g = 0.

9.5 Parallel transport

Let (M, g) be a Riemannian manifold, let γ : [a, b]→ M be a smooth curve. A
vector field over γ is a smooth map v : [a, b]→ TM such that v(t) ∈ Tγ(t)M for
all t ∈ [a, b].

We say that v is covariantly constant if the covariant derivative of v(t) in
the direction of the velocity γ̇(t) is zero,

∇γ̇(t)v(t) = 0. (103)

In that case, v(b) is called the parallel transport of v(a) along the curve γ.
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Figure 18: A vector field v over γ.

Remark 9.40. There is a slight subtlety when evaluating (103). We defined ∇
as a map from Vec(M)×Vec(M) to Vec(M), but neither v nor γ̇ is defined on
all of M . However, suppose for a second that v and γ̇ extend to smooth vector
fields ṽ and ˜̇γ on an open subset of M , with ṽ|γ(t) = v(t) and ˜̇γ|γ(t) = γ̇(t) on
the curve γ. Then the covariant derivative is

∇˜̇γ ṽ|γ(t) = (˜̇γσ∂σ ṽ
µ + Γµστ ˜̇γσ ṽτ )|γ(t)∂µ

=
(
d
dtv

µ(t) + Γµστ (γ(t))γ̇σ(t)vτ (t)
)
∂µ,

where the last step uses the chain rule applied to vµ(t) = ṽµ(γ(t)). Note that
∇˜̇γ ṽ|γ(t) is entirely independent of the way in which we extend v and γ̇ to smooth
vector fields on M !

We would like to define ∇γ̇(t)v(t), as ∇˜̇γ ṽ|γ(t), but unfortunately, not every
vector field on γ extends to a smooth vector field on M . Therefore, we simply
use local coordinates to define the covariant derivative along γ by

∇γ̇(t)v(t) :=
(
d
dtv

µ(t) + vσ(t)γ̇τ (t)Γµστ (γ(t))
)
∂µ. (104)

It turns out that this expression is independent of the choice of coordinates.

Problem 9.41. Show that (104) is independent of the choice of coordinates,
for example by using the solution to Problem 9.33. (For a more elegant proof
of this fact, see [L97, Lemma 4.9].)

We can view ∇γ̇(t)γ̇(t) as the acceleration of the curve γ. Since

∇γ̇(t)γ̇(t) =
(
γ̈µ + γ̇σγ̇τΓµστ

)
∂µ,

we see that the vanishing of the acceleration, ∇γ̇(t)γ̇(t) = 0, is equivalent to the
geodesic equation

γ̈µ + γ̇σγ̇τΓµστ = 0.

Apparently, the curves with covariantly constant velocity γ̇(t) are precisely the
geodesics! This gives us two equivalent ways to describe a geodesic:

(1) A geodesic is, locally, the shortest path between the points that it connects.

(2) A geodesic is a path with covariantly constant velocity.
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9.6 Curvature and the Riemann tensor

In general, the result of parallel transport of a vector v ∈ TpM to a vector
v′ ∈ Tp′M depends on the path γ from p to p′.

Figure 19: Parallel transport of the same vector along different paths.

So although the coordinate vector fields commute when acting on functions,
∂µ∂ν = ∂ν∂ν , they do not commute when acting on vectors, DµDν 6= DνDµ.
The failure of covariant derivatives to commute is measured by the Riemann
curvature tensor.

Definition 9.42 (Riemann tensor). The Riemann curvature tensor is the mul-
tilinear map

R : Vec(M)×Vec(M)×Vec(M)→ Vec(M)

defined by
R(u, v)w := (∇u∇v −∇v∇u −∇[u,v])w. (105)

Since [∂µ, ∂ν ] = 0 and Dµ := ∇∂µ , we have R(∂µ, ∂ν) = DµDν −DνDµ, so
indeed the Riemann tensor captures the noncommutativity of covariant deriva-
tives.

9.6.1 Coordinate representation of the Riemann tensor

Since the Riemann tensor is linear in each of its three arguments, you can pull
a scalar λ ∈ R out of the Riemann tensor in three different ways, R(λu, v)w =
R(u, λv)w = R(u, v)(λw) = λR(u, v)w. It turns out that you can even pull out
a function in the same way. This is rather remarkable, because the Riemann
tensor is constructed out of the Levi-Civita connection, which does not have this
property – remember the Leibniz rule (97). The third term in (105) is added
precisely to achieve this effect.

Proposition 9.43. For all u, v, w ∈ Vec(M) and f ∈ C∞(M), we have

R(fu, v)w = fR(u, v)w (106)

R(u, fv)w = fR(u, v)w (107)

R(u, v)(fw) = fR(u, v)w. (108)
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Proof. We use (96) and (97) repeatedly to take the function f out of the brack-
ets. Since

[u, fv] = u(f)v + f [u, v], (109)

we find:

R(u, fv)w = ∇u∇fvw −∇fv∇uw −∇[u,fv]w

= ∇uf∇vw − f∇v∇uw −∇u(f)v+f [u,v]w

= ∇uf∇vw − f∇v∇uw −∇u(f)v+f [u,v]w

= (f∇u∇vw + u(f)∇vw)− f∇v∇uw − (u(f)∇vw + f∇[u,v]w)

= f(∇u∇vw −∇v∇uw −∇[u,v]w) = fR(u, v)w.

This proves (107). Equation (106) follows from this. Indeed, from the defini-
tion of the Riemann tensor, one readily sees that R(u, v) = −R(v, u), so that
R(fu, v) = −R(v, fu) = −fR(v, u) = fR(u, v).

Finally, for (108), consider the three terms in

R(u, v)(fw) = ∇u∇v(fw)−∇v∇u(fw)−∇[u,v](fw)

separately. We find

∇u∇v(fw) = u(v(f))w + v(f)∇uw
:::::::

+ u(f)∇vw + f∇u∇vw

−∇v∇u(fw) = −v(u(f))w − u(f)∇vw − v(f)∇uw
:::::::

− f∇v∇uw

−∇[u,v](fw) = −[u, v](f)w − f∇[u,v]w,

and the marked symbols cancel to leave

∇u∇v(fw)−∇v∇u(fw)−∇[u,v](fw) = f
(
∇u∇v(w)−∇v∇u(w)−∇[u,v](w)

)
,

or R(u, v)(fw) = fR(u, v)w, as required.

In local coordinates, the Riemann tensor is completely determined by its
values on the coordinate vector fields ∂µ. On every coordinate patch Uα ⊆ M ,
we define the functions Rαβγδ as the coordinate coefficients of the vector field
R(∂β , ∂γ)(∂δ),

R(∂β , ∂γ)(∂δ) = Rαβγδ∂α. (110)

By Proposition 9.43, the Riemann tensor on arbitrary vector fields u, v, w is
given in terms of Rαβγδ by

R(u, v)w = R(uβ∂β , v
γ∂γ)(wδ∂δ)

= uβvγwδR(∂β , ∂γ)∂δ

= uβvγwδRαβγδ∂α.
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In particular, the value of the vector field R(u, v)w at the point p ∈M depends
only on the values up, vp, wp ∈ TpM at the same point p. The Riemann tensor
therefore determines a multilinear map

Rp : TpM × TpM × TpM → TpM (111)

for every p ∈M . Giving the Riemann tensor R : Vec(M)×Vec(M)×Vec(M)→
Vec(M) is therefore equivalent to specifying the multilinear map Rp : TpM ×
TpM × TpM → TpM for every point of p ∈M .

Since the Riemann tensor R is defined in terms of the Levi-Civita connection
∇, the coefficients Rαβγδ of the Riemann tensor with respect to local coordinates
can be expressed in terms of the Christoffel symbols Γµστ , which form the coor-
dinate description of the Levi-Civita connection.

Proposition 9.44. The coordinate expression for the Riemann tensor is

Rαβγδ = ∂βΓαγδ − ∂γΓαβδ + ΓαβσΓσγδ − ΓαγσΓσβδ. (112)

Proof. To calculate Rαβγδ in terms of the Christoffel symbols, we evaluate

R(∂β , ∂γ)(∂δ) = ∇∂β∇∂γ∂δ −∇∂γ∇∂β∂δ −∇[∂β ,∂γ ]∂δ

= ∇∂β (Γσγδ∂σ)−∇∂γ (Γσβδ∂σ)

= ∂βΓσγδ∂σ + ΓτβσΓσγδ∂τ − ∂γΓσβδ∂σ − ΓτγσΓσβδ∂τ

=
(
∂βΓαγδ − ∂γΓαβδ + ΓαβσΓσγδ − ΓαγσΓσβδ

)
∂α.

In the first equality, we use that [∂β , ∂γ ] = 0. In the second equality, we use that
∇∂γ∂δ = Γσγδ∂σ by definition of the Christoffel symbols. In the third equality, we
use the Leibniz rule (97), and the fourth equality is a reshuffling of the indices
α↔ σ and α↔ τ .

Since the coordinate representation Rαβγδ(x) of the multilinear map

Rp : TpM × TpM × TpM → TpM

depends smoothly on the coordinate x = φα(p), the Riemann curvature tensor
is a mixed tensor field of rank (3, 1) in the sense of §8.4.2.

9.6.2 Parallel transport along an infinitesimal square

The coefficients Rαβγδ can be interpreted as the effect of parallel transporting the
tangent vector ∂δ ∈ TpM along an infinitesimal square spanned by ∂β and ∂γ .

Choose local coordinates in which p ∈ M is represented by the origin
(0, . . . , 0), and identify a neighbourhood of p ∈ M with a neighbourhood of
the origin in Rn. Since we only need the coordinates xβ and xγ , we write f(s, t)
for a function evaluated at xβ = s and xγ = t, with all other coordinates equal
to zero. Let

γs,t := (0, . . . , 0, s, 0, . . . , 0, t, 0, . . . , 0)
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be the parameterized surface with xβ = s and xγ = t.
We consider the effect of parallel transport first along the line segment γ0,t

for t ∈ [0, ε], and then along the line segment γs,ε for s ∈ [0, ε], as opposed to
first translating along γs,0 for s ∈ [0, ε], and then along γε,t for t ∈ [0, ε]. The
four paths are the sides of a square with area proportional to ε2, see Fig. 20.
Since the effect is the same to first order in ε, we need a second order Taylor
expansion in ε to see the difference.

Proposition 9.45. If we parallel transport the basis vector ∂δ first along a
coordinate vector field ∂β and then along ∂γ (for the same time ε), then the
vector we get differs from the parallel transport of ∂δ first along ∂γ and then
along ∂β (for the same time ε) by

ε2Rαβγδ∂α +O(ε3).

Proof. By (104), the parallel transport equation ∇γ̇(t)v(t) = 0 in local coordi-
nates reads

d

dt
vµ(t) = −Γµστv

σ(t)γ̇τ (t). (113)

For the Taylor expansion, we will also need the second order derivative

d2

dt2
vµ(t) = ΓµστΓσαβv

α(t)γ̇β(t)γ̇τ (t)− ∂αΓµστ γ̇
α(t)vσ(t)γ̇τ (t)− Γµστv

σ(t)γ̈τ (t),

(114)
which is obtained in a straightforward way by differentiating (113). (Remember
that Γµστ (t) = Γµστ (γ(t)), so the chain rule yields d

dtΓ
µ
στ (t) = ∂αΓµστ γ̇

α.)
For the path γ0,t with initial condition v(0) = ∂δ, we find the Taylor expan-

sion

vµ(0, ε) = δµδ + ε
d

dt
vµ|t=0 + 1

2ε
2 d

2

dt2
vµ|t=0 +O(ε3) (115)

= δµδ − εΓ
µ
δγ(0, 0) + 1

2ε
2
(

Γµσγ(0, 0)Γσδγ(0, 0)− ∂γΓµδγ(0, 0)
)

+O(ε3).

We simply plugged in (113) and (114) in the Taylor formula, with vµ(0) = δµδ ,
γ̇µ = δµγ and γ̈µ = 0. (There is a repeated sum over σ, but not over γ since
both indices are downstairs.)

We now take vµ(0, ε) as initial condition for the parallel transport equation
along γs,ε, yielding the Taylor expansion

vµ(ε, ε) = vµ(0, ε) + ε
d

ds

∣∣∣
s=0

vµ(s, ε) + 1
2ε

2 d
2

ds2

∣∣∣
s=0

vµ(s, ε) +O(ε3). (116)

In the first term in (116), we simply plug in (115). For the second term in
(116), (113) yields ε ddsv

µ(s, ε) = −εΓµσβ(0, ε)vσ(0, ε). Again, we plug in (115)

for vσ(0, ε), but now we also need the first order taylor expansion Γµσβ(0, ε) =

Γµσβ(0, 0) + ε∂γΓµσβ +O(ε2) for the Christoffel symbols. This yields

ε
d

ds
vµ(0, ε) = −εΓµδβ(0, 0) + ε2

(
Γµσβ(0, 0)Γσδγ(0, 0)− ∂γΓµδβ(0, 0)

)
+O(ε3).
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Finally, using (114) for the third term in (116), we find

1
2ε

2 d
2

ds2
vµ(s, ε)|s=0 = 1

2ε
2
(

ΓµσβΓσδβ − ∂βΓµδβ

)
+O(ε3). (117)

Putting this together, we find the (mildly terrifying) expression

vµ(ε, ε) = δµδ − ε
(

Γµδγ + Γµδβ

)
+ 1

2ε
2
(

ΓµσγΓσδγ − ∂γΓµδγ

)
(118)

+ 1
2ε

2
(

ΓµσβΓσδβ − ∂βΓµδβ

)
+ ε2

(
ΓµσβΓσδγ − ∂γΓµδβ

)
.

If we translate first along the path γs,0 in the ∂β-direction, and then along the
path γε,t in the ∂γ-direction, then of course we find the same expression with β
and γ interchanged. Note that in (118), this only changes the last term on the
right hand side. The difference between these two ways of transporting ∂δ from
(0, 0) to (ε, ε) is therefore

ε2
(
∂βΓµδγ − ∂γΓµδβ + ΓµσβΓσδγ − ΓµσγΓσδβ

)
∂µ = ε2Rµβγδ∂µ,

as required.

Figure 20: Parallel transport of ∂δ along different sides of a coordinate square.

9.6.3 Symmetries of the Riemann tensor

The n4 coefficients Rαβγδ are not independent. In fact, the Riemann tensor has
the following three symmetries.

Proposition 9.46 (Algebraic symmetries of the Riemann tensor). For all
u, v, w, z ∈ Vec(M), we have

0 = R(u, v)w +R(v, u)w (119)

0 = g(R(u, v)w, z) + g(w,R(u, v)z) (120)

0 = R(u, v)w +R(v, w)u+R(w, u)v. (121)
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If we denote Rαβγδ := gαλR
λ
βγδ, then these three symmetries take the co-

ordinate form

0 = Rαβγδ +Rαγβδ (122)

0 = Rαβγδ +Rδβγα (123)

0 = Rαβγδ +Rαγδβ +Rαδβγ . (124)

This cuts down the number of independent components from n4 to n2(n2−1)/12.

Problem 9.47. Derive (122), (123) and (124) from (119), (120) and (121).

Equation (121), or its equivalent (124) in coordinates, is called the first
Bianchi identity.

Proof. Equation (119) follows straight from the definition of the Riemann ten-
sor. Comparing the two expressions

R(u, v)w = ∇u∇vw −∇v∇uw −∇[u,v]w,

R(v, u)w = ∇v∇uw −∇u∇vw −∇[v,u]w

it follows from [v, u] + [u, v] = 0 that R(u, v) +R(v, u) = 0.
Equation (120) follows from the compatibility of the Levi-Civita connection

∇ with the metric. Using (101) repeatedly, we find

uvg(w, z) = g(∇u∇vw, z) + g(∇uw,∇vz) + g(∇vw,∇uz) + g(w,∇u∇vz)
vug(w, z) = g(∇v∇uw, z) + g(∇vw,∇uz) + g(∇uw,∇vz) + g(w,∇v∇uz)

[u, v]g(w, z) = g(∇[u,v]w,z) + g(w,∇[u,v]z).

Since uvg(w, z)− vug(w, z)− [u, v]g(w, z) = 0, we have

0 = g
(
(∇u∇v −∇v∇u −∇[u,v])w, z

)
+ g
(
w, (∇u∇v −∇v∇u −∇[u,v])z

)
as required.

Just like (120) follows from the compatibility of ∇ with the metric g, the
first Bianchi identity (121) follows from the compatibility of ∇ with the Lie
bracket. Using the torsion-freeness relation (100) twice, we find

R(u, v)w +R(v, w)u+R(w, u)v = ∇u∇vw +∇v∇wu+∇w∇uv
−∇v∇uw −∇w∇vu−∇u∇wv
−∇[u,v]w −∇[v,w]u−∇[w,u]v

= ∇u(∇vw −∇wv)−∇[v,w]u+ cyclic

= ∇u([v, w])−∇[v,w]u+ cyclic

= [u, [v, w]] + cyclic = 0.

(By “+cyclic”, we mean that similar terms with u, v, w replaced by their cyclic
permutations v, w, u and w, u, v are added.) The last term is zero by the Jacobi
identity, cf. Proposition 6.11.
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The second Bianchi identity involves the covariant derivative of the Riemann
tensor. For a mixed tensor of rank (3, 1), the covariant derivative is defined on
u, v, w, z ∈ Vec(M) by

(∇uR)(v, w)(z) := ∇u(R(v, w)z)−R(∇uv, w)z −R(v,∇uw)z −R(v, w)∇uz.
(125)

Problem 9.48. This expression is C∞(M)-linear in each of its four entries,
and therefore defines a mixed tensor of rank (4, 1) on M .

In local coordinates, it is therefore determined by the coefficients Rαβγδ;η that
arise from the coordinate vector fields,

(∇∂ηR)(∂β , ∂γ , ∂δ) =: Rαβγδ;η∂α.

They involve first order derivatives of the coefficients of the Riemann tensor.

Problem 9.49. Show that

Rαβγδ;η = ∂ηR
α
βγδ + ΓαησR

σ
βγδ − ΓσηβR

α
σγδ − ΓσηδR

α
βγσ.

Proposition 9.50 (Second Bianchi identity).

(∇uR)(v, w) + (∇vR)(w, u) + (∇wR)(u, v) = 0. (126)

Proof. We consider∇u and R(v, w) as linear operators from Vec(M) to Vec(M).
Using (119), equation (125) can be rewritten as

(∇uR)(v, w) = [∇u, R(v, w)] +R(w,∇uv)−R(v,∇uw).

Since

[∇u, R(v, w)] + cyclic = [∇u, [∇v,∇w]]− [∇u,∇[v,w]] + cyclic

= −[∇u,∇[v,w]] + cyclic

= −R(u, [v, w]) +∇[u,[v,w]] + cyclic

= −R(u, [v, w]) + cyclic,

and since [v, w] = ∇vw −∇w, v by the torsion-freeness property, we find

(∇uR)(v, w) + cyclic = −R(u, [v, w]) +R(w,∇uv)−R(v,∇uw) + cyclic

= −R(u, [v, w]) +R(u,∇vw −∇wv) + cyclic

= 0.

In coordinates, the second Bianchi identity amounts to

Rαβγδ;η +Rαγηδ;β +Rαηβδ;γ = 0,

a first order PDE in the coefficients of the Riemann tensor.
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9.7 Scalar curvature and the ‘Theorema Egregium’.

From the Riemann tensor, one can construct the Ricci tensor with coefficients

Rαβ := Rσσαβ . (127)

From Rαβ := gασRσβ , one then defines the scalar curvature or Ricci scalar as

R := Rσσ. (128)

The Ricci tensor is a covariant tensor field of rank two. The scalar curvature is
a covariant tensor field of rank zero, that is, a smooth function on M .

Problem 9.51. Using (124) or otherwise, show that the Ricci tensor is sym-
metric, Rαβ = Rβα.

The following theorem, called Theorema Egregium (remarkable theorem) by
its discoverer C.F. Gauss in 1827, lies at the very root of differential geometry.

Theorem 9.52 (Theorema Egregium). Let (M, gM ) and (N, gN ) be Rieman-
nian manifolds with scalar curvature RM and RN , resectively. If M and N are
isometric with isometry φ : M → N , then RM = φ∗RN .

Proof. Let (Uα, φα) be a chart for N around q ∈ N . Since φ : M → N is
a diffeomorphism, the composition (φ−1(Uα), φα ◦ φ) is a chart for M around
p := φ−1(q). The basis vectors ∂Mµ of TpM with respect to the chart φα ◦ φ
are related to the basis vectors ∂Nµ of TqN with respect to the chart φα by

∂Nµ = φ∗∂
M
µ . Since gM = φ∗gN , we have

gMp (∂Mµ , ∂
M
ν ) = gNφ(p)(φ∗∂

M
µ , φ∗∂

M
ν ) = gNq (∂Nµ , ∂

N
ν ).

It follows that the coefficients gµν(x1, . . . , xn) of gM with respect to the chart
(φ−1(Uα), φα ◦φ) around p ∈M are precisely the coefficients of gN with respect
to the chart (Uα, φα) around q ∈ N . Now the Christoffel symbols are expressed
in terms of gµν(x1, . . . , xn) by (87), the coefficients of the Riemann tensor are
expressed in terms of the Christoffel symbols by (112), the coefficients of the
Ricci tensor are expressed in terms of those for the Riemann tensor by (127),
and, finally, the Ricci scalar is determined in terms of the coefficients of the
Ricci tensor by (128). We conclude that RMp = RNq = RNφ(p). Since this holds

for all p ∈M , we find that RM = φ∗RN as a smooth function on M .

This result is of major importance in cartography, where the aim is to map
a portion of the earth’s surface onto a flat piece of paper in such a way that –
up to a fixed scale factor – the distance between two points on the surface of the
earth corresponds to the distance between the images of those two points on the
piece of paper. In other words, a cartographer wishes to construct an isometry
between an open subset of S2 and an open subset of R2, where S2 carries the
round metric and R2 carries the Euclidean metric.

The following corollary to the Theorema Egregium makes the life of cartog-
raphers rather difficult: it asserts that it is impossible to map a piece of the
earth’s surface onto a flat chart without distortion.
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Corollary 9.53. The unit sphere S2 has scalar curvature R = 2. Euclidean
space has scalar curvature R = 0. Consequently, there are no isometries between
open subsets of S2 and an open subsets of R2.

Proof. In order to compute the Riemann tensor in local coordinates, one first
computes the Christoffel symbols Γµστ from the metric gµν using (87), and then
one computes Rαβγδ from the Christoffel symbols Γµστ using (112).

In Euclidean space Rn, the metric is given by the constant functions gµν = δµν .
Since their derivatives are zero, we find Γµστ = 0 by (87), and we conclude from
(112) that the Riemann tensor vanishes as well. By (127) and (128), we then
find R = 0.

To determine the Riemann tensor for the round metric on S2, we describe
an open subset of the sphere by spherical coordinates (φ, θ). In Problem 9.25,
we calculated the metric tensor(

gφφ gφθ
gθφ gθθ

)
=

(
sin2(θ) 0

0 1

)
.

From (87) we find that the only nonzero Christoffel symbols are

Γθφφ =
1

2
gθθ(∂φgθφ + ∂φgφθ − ∂θgφφ) = − sin(θ) cos(θ)

Γφθφ = Γφφθ =
1

2
gφφ(∂θgφφ + ∂φgθφ − ∂φgθφ) =

cos(θ)

sin(θ)
.

In order to determine the Riemann curvature tensor, it is convenient to take
the symmetries (122), (123) and (124) into account. Already from the first two
equations, we see that the only independent component of the Riemann tensor
is Rθθφφ. From (112), we find

Rθθφφ = ∂θΓ
θ
φφ − ∂φΓθθφ + ΓσφφΓθθσ − ΓσθφΓθφσ

= ∂θ(− sin(θ) cos(θ))− cos(θ)

sin(θ)
(− sin(θ) cos(θ))

= sin2(θ).

From the symmetries of the Riemann tensor, we find that Rθφθφ = −Rθθφφ is
equal to − sin2(θ), and that Rφφθθ = −Rφθφθ is equal to

Rφφθθ = −gφφRφθφθ = gφφRθθφφ = gφφgθθR
θ
θφφ =

1

sin2(θ)
· 1 · sin2(θ) = 1.

Summarizing, the four nonzero components of the Riemann tensor are

Rθθφφ = sin2(θ)

Rθφθφ = − sin2(θ)

Rφφθθ = 1

Rφθφθ = −1.
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From this we find that the Ricci tensor is diagonal with

Rφφ = sin2(θ), Rθθ = 1,

so the Ricci scalar is given by

R = gφφRφφ + gθθRθθ

=
sin2(θ)

sin2(θ)
+ 1 = 2.

Since this holds on the open dense subset of S2 where φ ∈ (0, 2π) and θ ∈ (0, π),
and since R is a continuous function on S2, we have R = 2 on all of S2.

Problem 9.54. Let (M, gM ) and (N, gN ) be Riemannian manifolds.

a) Let φ : M → N be a diffeomorphism such that φ∗gN = λgM for a scaling
factor λ ∈ R+. Show that φ∗RN = λpRM for some power p ∈ Z, and
determine p.

b) The unit n-sphere Sn = {~x ∈ Rn+1 ; ‖~x‖ = 1} has constant Ricci cur-
vature R = n(n − 1). Calculate the Ricci curvature for the n-sphere
Snr = {~x ∈ Rn+1 ; ‖~x‖ = r} of radius r > 0.

Problem 9.55. Let Σ := {(x, y, z) ∈ R3 ; z = e−
1
2 (x2+y2)}.

a) Show that Σ is an embedded submanifold of R3 of dimension 2.

b) Make a sketch of the surface Σ in R3.

c) For every p 6= (0, 0, 1) in Σ, there exists a chart (φα, Uα) around p with

φ−1
α (r, φ) = (r cos(φ), r sin(φ), e−

1
2 r

2

). Calculate the corresponding coor-
dinate vectors ∂r, ∂φ ∈ TpΣ ⊆ TpR3.

d) The surface Σ inherits the Euclidean metric from R3. Calculate the matrix(
grr grφ
gφr gφφ

)
of this metric with respect to the above coordinates, and calculate its
inverse matrix (

grr grφ

gφr gφφ

)
.

e) Calculate the 8 Christoffel symbols Γµστ . How many of them are zero?

f) Derive the geodesic equation for γ(t) = (r(t), φ(t)).

g) Calculate the Riemann tensor Rαβγδ. (Hint: out of the 24 = 16 components
of the Riemann tensor, there is only one linearly independent component.)
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h) Prove that there are no open neighbourhoods U ⊆ Σ that are isometric
to an open neighbourhood of the Euclidean space R2.

Problem 9.56 (Fubini-Study metric). Let CPn be complex projective space.
We equip Cn+1 with the Hermitian inner product

〈v, w〉 := v1w1 + . . .+ vn+1wn+1

that is linear on the right hand side. Define

N[v] := {w ∈ Cn+1 ; 〈v, w〉 = 0}

to be the orthogonal complement of the ray [v] ∈ CPn inside Cn+1.

a) Let v ∈ Cn+1 be a representative of [v] ∈ CPn with 〈v, v〉 = 1. Define the
linear map

Lv : N[v] → T[v]CPn by Lv(w) :=
d

dt

∣∣∣
t=0

[v + tw].

Show that Lv is a C-linear isomorphism. Show that if v′ = zv for a
complex number z of modulus 1, then Lv′(w) = z−1Lv(w).

b) Let (φn+1, Un+1) be the coordinate chart Un+1 = {[v] ∈ CPn ; vn+1 6= 0}
and

φn+1 : Un+1 → Cn ' R2n , φn+1([v]) =
1

vn+1
(v1, . . . , vn).

Calculate L−1
v (∂µ), where ∂µ ∈ T[v]CPn with µ = 1, . . . , n is the complex

basis corresponding to the above chart.

(Hint: calculate Lv(bµ), where b1, . . . , bn is the complex basis bµ = eµ −
〈v, eµ〉v of N[v] obtained by orthogonal projection of the first n canonical
basis vectors eµ = (0, . . . , 1, . . . 0) in Cn+1.)

c) For each [v] ∈ CPn, define the inner product g[v] : T[v]CPn×T[v]CPn → R
by

g[v](u,w) := Re〈L−1
v (u), L−1

v (w)〉.
Show that if v′ = zv, then Lv and Lv′ result in the same inner product.

d) Calculate the components gµν of the tensor g[v] with respect to the coor-
dinates (Uα, φα) described in the notes. Show that g[v] depends smoothly
on [v] ∈ CPn, and conclude that [v] 7→ g[v] is a Riemannian metric on
CPn. It is called the Fubini-Study metric.

(Hint: use part (b). It suffices to do the calculation for the chart (φn+1, Un+1),
the rest is similar.)

e) Every unitary transformation U : Cn+1 → Cn+1 induces a diffeomorphism
φU : CPn → CPn by φU ([v]) := [Uv]. Show that this is an isometry of the
metric g.

(Hint: show that U maps N[v] to N[uv], and that φU∗ ◦ Lv = LUv ◦ U .)
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f) Prove that the scalar curvature R := gτνRµµντ of g is constant. (Hint:
this can be done in 3 lines without any computation.)

g) Calculate the scalar curvature for CP1.
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10 General relativity

In the previous chapter, we made the transition from Euclidean geometry to
Riemannian geometry. In Euclidean geometry, the underlying space is Rn, and
the notion of length is provided by the standard inner product

(v, w) = v1w1 + . . .+ vnwn (129)

on Rn. In Riemannian geometry, the underlying space can be any smooth
manifold M . Our notion of length is entirely infinitesimal, and it is given by an
inner product

gp : TpM × TpM → R

on every tangent space. For a Riemannian metric g on M , every tangent space
TpM admits an orthonormal basis e1(p), . . . , en(p) such that gp(ei, ej) = δij .
Such a basis is called an orthonormal frame at p.

The transition from the special theory of relativity to the general theory of
relativity is very similar. In §1.2, we saw that special relativity is governed by
the Minkowski space M4, with the Minkowski metric

η(v, w) = −v0w0 + v1w1 + v2w2 + v3w3.

This Minkowski ‘metric’ is not a metric at all, since the inner product of a
vector with itself can be negative, or even zero. Nonetheless, we can define an
‘infinitesimal version’ of Minkowski space in exactly the same way as a Rieman-
nian manifold is an ‘infinitesimal version’ of Euclidean space.

A Lorentzian manifold (M, g) is a 4-dimensional manifold M , which is
equipped with a Lorentzian metric. A lorentzian metric is similar to a Rieman-
nian metric, except that the symmetric bilinear form gp : TpM×TpM → R need
not be positive definite. Instead, we require that at every point p, there exists a
basis e0(p), e1(p), e2(p), e3(p) of TpM such that gp(e0, e0) = −1, gp(ei, ei) = +1
for i = 1, 2, 3, and gp(ei, ej) = 0 for i 6= j.

In the same way that every tangent space to a Riemannian manifold looks
like a Euclidean space, every tangent space to a Lorentzian manifold now looks
like a Minkowski space.

10.1 The Geodesic Principle

The dynamics of general relativity are rather aptly summarised by the following
quote, usually attributed to J. A. Wheeler:

Space tells matter how to move.
Matter tells space how to curve.

Mathematically, space–time is modelled by a Lorentzian manifold (M, g). Just
like for Riemannian manifolds, every Lorentzian manifold has a unique Levi-
Civita connection ∇ that is both torsion-free and preserves the Lorentzian met-
ric. And just like for Riemannian manifolds, the requirement that γ̇ be constant
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with respect to ∇ gives rise to the geodesic equation

γ̈µ + Γµστ γ̇
σγ̇τ = 0. (130)

The first part of Wheeler’s quote pertains to Geodesic Principle:

“The motion of a free point particle is described by a geodesic with g(γ̇, γ̇) ≤ 0”

In Minkowski space, the coefficients gµν = ηµν of the metric tensor are constant,
so the Christoffel symbols are zero. The geodesic equation

γ̈µ = 0

is rather easy to solve; the solutions are

γ(s) =


ct(s)
x(s)
y(s)
z(s)

 =


ct(0) + p0s
x(0) + p1s
y(s) + p2s
z(s) + p3s

 .

Note that vx = dx/dt = cp1/p0, and similarly vy = cp2/p0 and vz = cp3/p0.
The requirement g(γ̇, γ̇) ≤ 0 is equivalent to p2

1 + p2
2 + p2

3 ≤ p2
0, which, in turn,

is equivalent to ‖~v‖ ≤ c. In other words, the geodesic principle implies that no
particle can move faster than light!

Remark 10.1 (Proper time). In Riemannian geometry, a geodesic locally min-
imizes the distance between the points it connects. Similarly, in Lorentzian
geometry, a geodesic is an extremal point of the quantity

S(γ) =

∫ sf

si

√
−gµν γ̇µγ̇νds.

This means that geodesics are still solutions to d
dε |ε=0S(γε), but they can be

minima, maxima or saddle points. If g(γ̇, γ̇) < 0, then S(γ) is interpreted as
the proper time along the curve, i.e., the time difference between the initial and
final space-time points γ(si) and γ(sf ) as experienced by an observer that moves
along with the curve.

In a curved space–time (M, g), geodesic motion is the closest thing we have to
a straight line. In that sense, the Geodesic Principle rather resembles Newton’s
first law of motion, which states that a free particle moves at a constant speed
as long as it does not experience any force.

However, if the Christoffel symbols of the metrig g are nonzero, then the
effect of geodesic motion can be spectacularly different from a straight line.
For example, in Einstein’s theory of general relativity, the motion of the earth
around the sun is a geodesic, but certainly not a straight line. According to
Einstein, the reason that the earth moves around the sun is not that it expe-
riences any gravitational force, but that the sun causes space–time to ‘curve’.
Due to the large mass of the sun, the space–time through which the earth moves
is described by M = R4 not with the Minkowski metric gµν = ηµν , but with a
different Lorentzian metric gµν , whose nontrivial Christoffel symbols give rise to
‘curved’ geodesics. It is this change in the metric – rather than any non-existent
‘gravitational force’ – which causes the earth to stay in orbit around the sun.
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10.2 Einstein’s equation

To make this effect quantitative, Einstein proposed an equation in which, in
the words of Wheeler, matter “causes space–time to curve”. In this formula,
the relevant properties of matter are captured by the Stress-Energy-Momentum
tensor

(Tµν) =


T00 T01 T02 T03

T10 T11 T12 T13

T20 T21 T22 T23

T30 T31 T32 T33

 (131)

Since this is a symmetric tensor, it contains only 10 independent quantities.
With respect to coordinates1 in which gµν(p) = ηµν , we can interpret T 00(p) as
the energy density, T 0j as the density of j-momentum (for j = x, y, z), T i0 as
the flow of energy in the ∂i direction, and T ij as the flow of j-momentum in the
i-direction.

To find a partial differential equation for gµν in terms of Tµν , it is natural to
consider the Riemann tensor Rαβγδ. Recall that the Ricci tensor is defined by

Rαβ := Rσσαβ , (132)

and the Ricci scalar is defined in terms of Rαβ = gασRσβ by

R := Rσσ = gασRσα. (133)

The Einstein equation, describing the effect of the Stress-Energy-Momentum
tensor Tµν on space–time, is

Rµν − 1
2gµνR =

8πG

c4
Tµν , (134)

where G is Newton’s gravitational constant and c is the speed of light.
The Einstein equation is a nonlinear second order PDE for gµν , with Tµν

as a source term. Indeed, since the formula 87 for the Christoffel symbols Γµστ
involves first order derivatives of gµν , and since the formula 112 for the Riemann
tensor Rαβγδ involves first order derivatives of the Christoffel symbols, the left
hand side of (134) involves second order derivatives of gµν .

Problem 10.2 (Vaccum field equations). Show that on 4-dimensional space–
time, the trace of the Einstein tensor Gµν := Rµν − 1

2gµνR is Gµµ = −R. Con-
clude that if Tµν = 0, then (134) is equivalent to

Rµν = 0. (135)

These are the vacuum field equations for the gravitational field.

1For each point p ∈ M , one can find coordinates xµ such that gµν(p) = ηµν at that
particular point p, but not necessarily for other points p′ in the same coordinate patch.
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10.3 Schwarzschild solution and gravitational waves

Although Einstein achieved remarkable success with approximate solutions us-
ing a Taylor series expansion, he originally did not expect to find exact solutions
to the equation which bears his name. However, within a few months after Ein-
stein published his 1915 paper, Karl Schwarzschild came up with the following
useful solution.

Consider the sun as a point particle, traversing the geodesic γ(t) = (t, 0, 0, 0).
Then the Stress-Energy-Momentum tensor is a δ-function localized at (x, y, z) =
(0, 0, 0). We therefore try to solve the Einstein equation (134) on the manifold
R4 \ {(t, 0, 0, 0) ; t ∈ R}, with Tµν = 0 on the right hand side.

Schwarzschild used coordinates t, r, φ, θ, and he used an Ansatz of the form
gtt gtr gtθ gtφ
grt grr grθ grφ
gθt gθr gθθ gθφ
gφt gφr gφθ gφφ

 =


−f2(r) 0 0 0

0 1
f2(r) 0 0

0 0 r2 sin2(φ) 0
0 0 0 r2

 , (136)

where the function f(r) is still to be determined. Note that the lower right
2 × 2 block is just the round metric on a sphere with radius r, and the left
upper 2×2 block is proportional to the Minkowski metric, with an r-dependent
scaling factor 1/f2(r) that is still to be determined.

One can calculate the Christoffel symbols for this metric, use them to cal-
culate the Riemann tensor, and find the Ricci tensor and scalar curvature.
Plugging this into the Einstein equation (134) with Tµν = 0, one finds that
Schwarzschild’s Ansatz is a solution if and only if d

dr (rf2(r)) = 1. This has the
solution f2(r) = 1− ρ

r , where the constant ρ is called the Schwarzschild radius.

Problem 10.3. Perform the necessary calculations.

Comparing the geodesics for the Schwarzschild metric with the solutions of
Newton’s equations of motion for the gravitational potential, one can show that
ρ = 2MG/c2, where G is the gravitational constant and M is the mass of the
sun.

The Schwarzschild solution gives rise to a number of surprising phenom-
ena. Using the Christoffel symbols derived from the metric (136), one finds the
geodesic equation that describes the rotation of the planets around the sun due
to the gravitational distortion of space–time. These geodesics wind around the
t-axis in R4, and projecting them onto the x, y, z-hyperplane, one expects to
find an ellipse with the sun in one of the focal points. As it turns out, this is al-
most what happens. In fact, the orbits do not exactly ‘close up’, but every year
the ellipse traversed by the planet shifts a little. This perihelium precession was
known before the advent of general relativity, and the fact that general relativity
correctly explains this effect was historically the first experimental confirmation
of the theory. (In his original paper, Einstein used Taylor expansions to find an
approximate solution in order to calculate this effect, as Schwarzschild had not
yet found his solution.)
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Figure 21: Precession of planetary orbits around the sun.

Another interesting effect of general relativity is that even light moves along
a geodesic – albeit one with g(γ̇, γ̇) = 0. If one calculates the deflection of
light caused by the gravitational effect of the sun in the Schwarzschild solution,
one finds an effect that is twice as strong as the corresponding effect in the
Newtonian theory of gravity. This effect was measured during a 1919 eclipse
(when the sunlight is sufficiently blocked to observe the deflection of starlight
by the sun), and the effects were found to be in agreement with the predictions
of general relativity.

Problem 10.4. To describe a point particle falling straight into a black hole,
it suffices to consider only the t and r component of the Schwarzschild metric,(

gtt gtr
grt grr

)
=

(−(1− ρ
r ) 0

0 1
1− ρr

)
,

where ρ := 2MG
c2 is the Schwarzschild radius. It is convenient to parameterize

the curve γ by the distance r from the origin, so (γt(r), γr(r)) = (t(r), r). This
way, the function t(r) is the only relevant degree of freedom.

a) For Lorentzian manifolds, the geodesic equation describes extremal points
of the action

S(γ) :=

∫ rf

ri

√
−gµν d

drγ
µ d
drγ

ν dr.

Prove that for a small variation of the path tε(r) = t(r) + εδt(r) that van-
ishes at the endpoints, δt(ri) = δt(rf ) = 0, the Euler-Lagrange equation
for d

dεS(tε)|ε=0 = 0 reads

d

dr

 (1− ρ
r )( dtdr )√

(1− ρ
r )( dtdr )2 − 1

1− ρr

 = 0.

(Hint: revisit the proof of the geodesic equation, but note that with our
parameterization gµν

d
drγ

µ d
drγ

ν 6= 1!)
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b) Conclude that there exists a constant K such that

t(rf ) = t(ri) +

∫ rf

ri

K

1− ρ
r

√
1

ρ
r +K2 − 1

dr.

Determine K in terms of ri and the velocity vi = ( dtdr )−1 at the initial
radius ri.

c) Show that t(rf )→∞ for rf ↓ ρ. So from the point of view of an outside
observer, a point-particle falling into a black hole will never reach the
Schwarzschild radius.

Finally, let us mention another phenomenon that is predicted by general
relativity: gravitational waves. On M = R4 with coordinates x, y, u = t − z
and v = t+ z, the Ansatz

gxx gxy gxu gxv
gyx gyy gyu gyv
gux guy guu guv
gvx gvy gvu gvv

 =


L2(u)e2β(u) 0 0 0

0 L2(u)e−2β(u) 0 0
0 0 0 −1
0 0 −1 0

 (137)

is a solution to the vacuum (Tµν = 0) Einstein solution if and only if L(u) and
β(u) satisfy the ODE

d2

dt2
L(u) +

(
d

du
β(u)

)2

L(u) = 0. (138)

Problem 10.5. Verify that (137) is a solution to (134) if and only if L(u) and
β(u) satisfy (138).

If L = 1 and β = 0, this is simply the Minkowski metric in the coordinates
x, y, u, v. The solutions to the linearized equation represent gravitational waves,
where space–time periodically expands and contracts. These gravitational waves
arise in astrophysical events involving extremely massive objects undergoing
rather violent dynamics (such as the merging of black holes), and they propa-
gate through empty space. When the gravitational wave reaches the earth, the
contractions of space–time, although minute, can in principle be detected by
laser interferometry. This is the way in which the LIGO-observatories managed
to experimentally confirm the existence of gravitational waves on September 14,
2015.
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A Topological spaces

Roughly speaking, a topology is the minimum structure that one needs in order
to talk about continuity of functions. In this appendix we define topological
spaces, and prove some of their basic properties.

A.1 Continuity in Rn

First, let us recall what it means for a function φ : Rn → Rm to be continuous.

Definition A.1 (Continuity for Rn, ε/δ-version). A map φ : Rn → Rm is con-
tinuous if for every x ∈ Rn and for every ε > 0, there exists a δ > 0 such that
‖φ(y)− φ(x)‖ < ε whenever ‖x− y‖ < δ.

This is the definition in terms of ε’s and δ’s that we all know and some of us
love. But there is another, equivalent definition of continuity in terms of open
sets. A subset U ⊆ Rn is called open if for every x ∈ U , there exists an ε > 0
such that the ball

Bε(x) := {y ∈ Rn ; ‖y − x‖ < ε}

of radius ε around x is contained in U .
We can give the following definition of continuity in terms of open subsets.

Definition A.2 (Continuity for Rn, open version). A map φ : Rn → Rm is
continuous if the preimage φ−1(U) ⊆ Rn of every open set U ⊆ Rm is open.

The two definitions A.1 and A.2 of continuity are equivalent, but the ad-
vantage of Definition A.2 is that all ε’s and δ’s are hidden in the definition of
an open set. This gives us an important clue on how to define continuity for
functions on spaces that are more general than Rn.

We do not need a norm or metric, we only need to know what the
open sets are.

Problem A.3. Prove that Definition A.1 and Definition A.2 are equivalent.

A.2 Topological spaces and continuity

A topological space is a set M , together with a collection T of subsets U ⊆ M
that we choose to call open. These open sets are required to behave well under
union and intersection.

Definition A.4 (Topology). A topological space is a set M , together with a
collection T of subsets U ⊆M . We call a subset U ⊆M open if it is in T . The
open sets are required to satisfy the following rules.

1 The empty set and M itself are open.

2 Unions of open sets are open.
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3 Finite intersections of open sets are open.

A subset U ⊆ M is called closed if its complement M \ U is open. If the
topology is clear, we simply refer to (M, T ) as ‘the topological space M ’.

Problem A.5 (Standard topology on Rn). Prove that the collection T of sub-
sets U ⊆ Rn that are open in the sense of §A.1 is indeed a topology on Rn. This
is called the standard topology of Rn.

Topological spaces allow us to give a very clean formulation of notions that
involve ‘nearby points’ in terms of neighbourhoods.

• An open neighbourhood of x is an open set U ⊆M that contains x.

• A neighbourhood N ⊆M of x is a set that contains an open neighbourhood
of x. In other words, there exists an open subset U ⊆ N with x ∈ U ⊆ N .

We think of a neighbourhood of x as a set that contain all points that are ‘close
to x’.

We would like to call a map φ : M → N continuous if it sends nearby points
to nearby points. If M and N are topological spaces, we can make this precise
as follows.

Definition A.6 (Continuity). Let M and N be topological spaces. The map
φ : M → N is continuous if the preimage φ−1(U) ⊆M of any open set U ⊆ N
is open in M .

Note that this is exactly the same definition as Definition A.2! The moti-
vating example of a topological space is of course the set M = Rn, with the
topology T of subsets U ⊆ Rn that are open in the sense of §A.1.

Problem A.7. What is a neighbourhood of a point x ∈ Rn? Would you think
it is fair to say that a neighbourhood of x contains all points that are ‘close to
x’?

Problem A.8 (Concatenation). Suppose that L, M and N are topological
spaces. If φ : M → N and ψ : L→ M are continuous, then their concatenation
φ ◦ ψ : L→ N is continuous as well.

A topological space is called connected if it cannot be written as the disjoint
union of two nonempty open subsets.

Definition A.9 (Connectedness). A topological space M is connected if for
any pair A,B ⊆M of open sets with M = A∪B and A∩B = ∅, we have either
A = ∅ or B = ∅.

Problem A.10. Equivalently, every A ⊆ M that is both open and closed
satisfies either A = ∅ or A = M .

Problem A.11 (The continuous image of a connected space is connected).
Suppose that M is connected, and that φ : M → N is both continuous and
surjective. Then N is connected.
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Although they will not be very prominent in this course, it is good to realise
that there exist examples of topological spaces which are not at all Rn-like.

Problem A.12 (Discrete topology). Let M be an arbitrary set, and let T be
the discrete topology, consisting of all subsets of M .

a) What does it mean for a function φ : M → R to be continuous?

b) What does it mean for a function φ : R→M to be continuous?

Problem A.13 (Indiscrete topology). Let M be an arbitrary set, and let T :=
{∅,M} be the indiscrete topology.

a) What does it mean for a function φ : M → R to be continuous?

b) What does it mean for a function φ : R→M to be continuous?

Problem A.14 (A subset of a topological space is not a door). A subset U of a
topological space M can be open, closed, neither open nor closed, or both open
and closed. Consider these options for the subsets U ⊆ R given by ∅, (0, 1),
[0, 1), (0, 1], [0, 1] and the whole space R.

A.3 Constructing topological spaces

We briefly explore a number of ways in which topological spaces arise in practise.
First of all, every metric space is a topological space. Secondly, starting from a
topological space, one can form subspaces and quotients to obtain new topolog-
ical spaces. Finally, products of topological spaces are topological spaces again.
The topological spaces that we encounter in this course are often quotients or
subspaces of the metric space Rn.

A.3.1 Metric spaces are topological spaces

One important source of topological spaces are metric spaces (M,d). Recall
that a metric d : M ×M → R satisfies

(1) d(x, y) = d(y, x)

(2) d(x, z) ≤ d(x, y) + d(y, z)

(3) d(x, y) = 0 if and only if x = y.

If one thinks of d(x, y) as the distance from x and y, then (1) says that this is
the same as the distance from y to x, (2) says that going from x to z is at most
as far as first going from x to y and then going from y to z, and (3) says that
the only point at distance zero from x is x itself.

Definition A.15 (Topology for a metric space). For a metric space (M,d), we
define the topology Td by declaring U ⊆M to be open if for every x ∈ U , there
exists an ε > 0 such that the ball

Bε(x) := {y ∈ Rn ; d(x, y) < ε}

of radius ε around x is contained in U .
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Proposition A.16. Every metric space is a topological space.

Proof. We check that Td has the three properties mentioned in Definition A.4.

(1) Clearly ∅ and M are open.

(2) Suppose that Ui is open for all i in an index set I. Then
⋃
i∈I Ui is open

as well. Indeed, if x ∈
⋃
i∈I Ui, then certainly x ∈ Ui for some i ∈ I. Since

Ui is open, there exists an ε > 0 such that Bε(x) is contained in Ui. But
then Bε(x) is contained in

⋃
i∈I Ui as well.

(3) Suppose that Ui is open for i = 1, . . . , n. Then
⋂n
i=1 Ui is open as well.

Indeed, if x ∈
⋂n
i=1 Ui, then x ∈ Ui for all i = 1, . . . , n. Since Ui is open,

there exists an εi > 0 such that Bεi(x) is contained in Ui. If we take ε
to be the smallest of the ε1, . . . , εn, then Bε(x) is contained in all sets Ui,
and hence in their intersection

⋂n
i=1 Ui.

Note that although finite intersections of open sets are open, infinite inter-
sections need not be open. For example, the intervals (−1/n, 1/n) are open
subsets of R, but their intersection

⋂∞
n=1(−1/n, 1/n) = {0} is not.

A.3.2 Subspaces are topological spaces

Let M be a topological space. Then any subset Σ ⊆M is a topological space if
we endow it with the subspace topology.

Definition A.17 (Subspace topology). The subspace topology of Σ is the col-
lection of sets of the form U ∩ Σ, where U ⊆M is open in M .

Figure 22: Open set in the subspace topology

Problem A.18. Show that the subspace topology is indeed a topology.

Problem A.19 (Topology of spheres). Describe the open sets for the topology
of

Sn := {(x0, . . . , xn) ∈ Rn+1 ; (x0)2 + . . .+ (xn)2 = 1} ,

considered as a subspace of Rn+1. What does it mean for a map φ : Sn → R to
be continuous?
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The following exercise shows that continuity of functions with respect to
the subspace topology can often be expressed in terms of continuity in the
surrounding space.

Problem A.20. Suppose that M and N are topological spaces, and that
Σ ⊆M has the subspace topology.

a) Show that the inclusion ι : Σ ↪→M is continuous.

b) Conclude that if φ : M → N is continuous, then φ ◦ ι : Σ→ N is continu-
ous as well, cf. Problem A.8. (This is just the restriction of φ to Σ.)

c) The map φ : N → Σ is continuous if and only if ι◦φ : N →M is continuous.
(This is just the map to Σ considered as a map into M .)

Problem A.21. The altitude map φ : S2 → R with φ(x, y, z) = z is continu-
ous, as is the curve c : R → S2 defined by c(t) = (cos(t), sin(t), 0). (Hint: use
Problem A.20.)

A.3.3 Quotients are topological spaces

Starting from a topological space M , we can also form new topological spaces
by taking quotients.

Recall that if ∼ is an equivalence relation on a set M , then the equivalence
class of x ∈M is the set of all points x′ that are related to x,

[x] := {x′ ∈M ; x′ ∼ x}.

The quotient of M by the relation ∼ is the set of all equivalence classes,

M/∼ := {[x] ; x ∈M}.

Since [x′] = [x] if and only if x′ ∼ x, one can think of M/∼ as the space obtained
from M by identifying all the points which are in relation to each other.

Example A.22. One can think of the circle as the space obtained from the
real line by identifying all points that differ by an integer. More precisely, define
the relation ∼ on R by x′ ∼ x if and only if x′ − x ∈ Z. Every point [x] ∈ R/∼
can be represented by a unique x ∈ [0, 1). Since [0] = [1] in R/∼, we can view
R/∼ as the interval [0, 1] where 0 and 1 are identified.

Problem A.23 (The circle as a quotient). Find a bijection between R/∼ and
the circle {(x, y) ∈ R2 ; x2 + y2 = 1}.

If M is a topological space and ∼ is a relation on M , then M/∼ is a topo-
logical space in a natural manner. We define the quotient map π : M → M/∼
by π(x) = [x]. By definition, we say that a subset U ⊆M/∼ is open in M/∼ if
and only if

π−1(U) := {x ∈M ; [x] ∈ U}

is open in M . This yields the quotient topology on M/∼.
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Proposition A.24 (Quotient topology). The open sets U ⊆M/∼ constitute a
topology on M/∼.

Proof. There are three properties to check.

(1) The empty set U = ∅ and the whole space U = M/∼ are open in M/∼
because π−1(∅) = ∅ and π−1(M/∼) = M are open in M .

(2) Suppose that Ui ⊆M/∼ is open in M/∼ for every i ∈ I. We wish to show
that their union

⋃
i∈I Ui is open as well. Since Ui is open in M/∼, the

set π−1(Ui) = {x ∈ M ; [x] ∈ Ui} is open in M by definition. But since
M is a topological space, the union

⋃
i∈I π

−1(Ui) is again open in M . As
π−1(

⋃
i∈I Ui) =

⋃
i∈I π

−1(Ui) (why?), the union
⋃
i∈I Ui is open in M/∼.

(3) The proof that finite intersections of open sets are open is similar.

Proposition A.25. The quotient map π : M →M/∼ is continuous.

Proof. If U ⊆M/∼ is open, then π−1(U) is open by definition.

The definition of quotients spaces is somewhat abstract, so it is good to look
at some examples that will be important in the course.

Example A.26 (Tori). The the n-torus Tn := Rn/∼ is the quotient of Rn
by the relation that identifies x, x′ ∈ Rn if and only if x − x′ ∈ Zn. The 2-
torus T2 can be visualized as follows. Since every [x] ∈ T2 has precisely one
representative x = (x1, x2) in [0, 1) × [0, 1), we can think of T2 as the square
[0, 1) × [0, 1). Since [(x1, 0)] = [(x1, 1)], the bottom of the square is identified
with the top, and since [(0, x2)] = [(1, x2)], the left and right sides are identified.
Similarly, the 3-torus T3 can be visualized as the unit cube [0, 1)× [0, 1)× [0, 1)
where opposite faces are identified.

Figure 23: The 2-torus as a square where opposite sides are identified.

Problem A.27 (Open subsets of T2). Consider the subset U ⊆ T2 defined by

U := {[(x1, x2)] ∈ T2 ; x2
1 + x2

2 < 1/10} .

a) Draw a picture of U ⊆ T2 and π−1(U) ⊆ R2.

b) Show that U is open.
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Example A.28 (Projective space). The complex projective space CPn is the
set of all rays in Cn+1, that is, the set of all 1-dimensional complex linear
subspaces of Cn+1 with the origin deleted. To see that this is a topological
space, we need both the subspace topology and the quotient topology. First,
the set M := {v ∈ Cn+1 ; v 6= 0} of all nonzero vectors in Cn+1 is a topological
space, as it inherits the subspace topology from Cn+1. We then define CPn to
be the quotient of M by the equivalence relation that identifies two nonzero
vectors v, v′ ∈ M if and only if they are parallel, that is, v ∼ v′ if and only if
v′ = λv for some λ ∈ C×. Considered as an equivalence class, a point [v] ∈ CPn

is then the complex line
[v] = {λv ; λ ∈ C×}

of all nonzero vectors that are parallel to v.

A.3.4 Products are topological spaces

Another way of making new topological spaces from old ones is by taking prod-
ucts.

Definition A.29 (Product topology). If M and N are topological spaces, we
define a subset of M ×N to be open if it is a union of sets of the form U × V ,
where U is open in M and V is open in N .

Problem A.30. Show that the product topology is indeed a topology.

Problem A.31. Show that the standard topology of R2 (Problem A.5) coin-
cides with the product topology on R× R. (Hint: squares fit inside circles and
vice versa. Pictures are helpful.)

Problem A.32 (Product topology on Rn). For Rn = R × . . . × R, we have a
metric topology (from Proposition A.16) and a product topology (from Defini-
tion A.29). Show that these two topologies coincide.

a) Show that the metric topology of Rn+m coincides with the product topol-
ogy on Rn × Rm.

b) Conclude that the n-fold product R× . . .×R has the same topology as Rn.

c) Show that a map φ : R→ R×. . .×R is continuous for the product topology
if and only if each of its components φµ : R→ R is continuous.

d) Conclude that a map φ : R→ Rn is continuous for the metric topology if
and only if each of its n components φµ : R→ R is continuous.

Problem A.33. A map φ : L→M ×N is continuous if and only if its compo-
nents φM : L→M and φN : L→ N are continuous.
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A.4 Homeomorphisms

Suppose that a map φ : M → N is bijective, and that both φ and φ−1 are
continuous. Then φ does not only identify points in M with points in N , but it
also identifies open sets U in M with open sets φ(U) in N .

Definition A.34 (Homeomorphisms). A homeomorphism φ : M → N is a bi-
jection such that both φ and φ−1 are continuous.

Proposition A.35. Let φ : M → N be a homeomorphism. Then open subsets
U ⊆ M correspond bijectively with open subsets V ⊆ N via V = φ(U) and
U = φ−1(V ).

Proof. If φ(U) is open, then U = φ−1(φ(U)) is open as well, because φ is
continuous. Conversely, if U is open, then φ(U) = (φ−1)−1(U) is open because
φ−1 is continuous.

Figure 24: Open sets U ⊆M correspond to open sets φ(U) ⊆ N

If there is a homeomorphism between M and N , we therefore think of M
and N as ‘the same space’ as far as their topologies are concerned. Such spaces
are called homeomorphic.

Problem A.36 (n-spheres with different radii are homeomorphic). The n-
sphere with radius r > 0 is the set Snr := {x ∈ Rn+1 ; (x0)2 + . . .+ (xn)2 = r2},
with the subspace topology inherited from Rn+1. Prove that n-spheres with
different radii are homeomorphic.

Problem A.37 (Two representations of the circle). Let

S1 := {(x, y) ∈ R2 ; x2 + y2 = 1}

be the unit circle in R2, equipped with the subspace topology. Let T1 := R/Z
be the 1-torus, equipped with the quotient topology. Prove that T1 and S1 are
homeomorphic.

Problem A.38. Intuitively, would you think S1 and [0, 2π) ought to be iden-
tified as topological spaces?

a) Check that the map φ : [0, 2π) → S1 with θ 7→ (cos(θ), sin(θ)) is bijective
and continuous.

b) Is it a homeomorphism?
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A.5 Hausdorff spaces

On a topological space M , we are able to define continuity in terms of open
sets. Another notion that involves ‘nearby points’ is the notion of convergence.
A sequence xi converges to x if xi is ‘close to’ x if i is sufficiently large. Again,
we can make sense of this in the context of topological spaces.

Definition A.39 (Convergence). A sequence xi of points in M converges to
x ∈ M if for any open neighbourhood U of x, there exists an N > 0 such that
xi ∈ U for all i ≥ N .

Again, this is a definition where the ε’s apear to have magically vanished.
The following exercise shows that they are really hidden in the definition of a
topological space.

Problem A.40 (Convergence in Rn). Show that this definition of convergence
coincides with the usual definition of convergence in Rn. Namely, a sequence of
points xi in Rn converges to x ∈ Rn if for any ε > 0, there exists an N > 0 such
that ‖xi − x‖ < ε whenever i ≥ N .

A.5.1 Hausdorff spaces

Topological spaces allow us to talk about continuity and limits. It turns out,
however, that our new notion of limits has a major drawback: it is possible
to construct topological spaces where a single sequence xi converges to two
different points x and x′ at the same time.

Problem A.41 (A silly counterexample). Let M = {0, 1}, and let T be the
topology consisting of ∅ and {0, 1}. Check that T is indeed a topology, and that
every sequence xi converges to 0 as well as 1.

To exclude such artificial counterexamples, and to ensure that every sequence
has at most one limit, we introduce the notion of a Hausdorff space.

Definition A.42 (Hausdorff spaces). A topological space M is called Hausdorff
if for any two distinct points x, y ∈ M , there exist open neighbourhoods Ux of
x and Uy of y which do not intersect, Ux ∩ Uy = ∅.

Proposition A.43. In a Hausdorff space M , any sequence has at most one
limit.

Proof. Suppose that a sequence xi converges to two distinct points x and y
in M . Since M is Hausdorff, we can choose open neighbourhoods Ux of x and
Uy of y such that Ux ∩ Uy = ∅. Since xi converges to x, there exists an N > 0
such that xi ∈ Ux for i > N . Similarly, there exists an M > 0 such that xi ∈ Uy
for i > M . Apparently, we have xi ∈ Ux ∩ Uy for i ≥ max{N,M}, which is a
contradiction because Ux ∩ Uy = ∅.

Problem A.44. The silly example of Problem A.41 is not Hausdorff.
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Problem A.45. Prove that the n-torus Tn is Hausdorff.

Although non-Hausdorff topological spaces are used in some areas of math-
ematics (algebraic geometry, logic, foliations), we will not need them in this
course. We will allways require a smooth manifold to be Hausdorff.

A.5.2 Construction of Hausdorff topological spaces

Now that we got acquainted with topological spaces and the Hausdorff property,
let us describe a few ways to construct such spaces. One important source of
Hausdorff topological spaces are metric spaces (M,d).

Proposition A.46. Every topological space with a continuous metric is Haus-
dorff.

Proof. Let x, y ∈ M be distinct points in M . If we define ε := 1
3d(x, y), then

the neighbourhoods Ux := Bε(x) and Uy := Bε(y) are open because the metric
is continuous, and they are disjoint by the triangle inequality. Indeed, suppose
that z ∈ Ux ∩ Uy. Then d(x, z) < ε and d(y, z) < ε, so that d(x, y) < 2ε by the
triangle inequality. But since 2ε = 2

3d(x, y), this implies d(x, y) = 0, contrary
to our assumption that x and y are distinct.

Once we have established that a space is Hausdorff, all its subspaces will be
Hausdorff as well.

Proposition A.47 (Subspaces of Hausdorff spaces are Hausdorff). If M is
Hausdorff, then any subset Σ ⊆ M equipped with the subspace topology will be
Hausdorff as well.

Proof. Since M is Hausdorff, two distinct points σ, σ′ in Σ admit disjoint open
neighbourhoods Uσ ⊆M and Uσ′ ⊆M inside M . But then Uσ ∩Σ and Uσ′ ∩Σ
are disjoint open neighbourhoods in Σ.

For example, since Rn+1 is a Hausdorff space, the sphere

Sn := {(x0, . . . , xn) ∈ Rn+1 ; (x0)2 + . . .+ (xn)2 = 1}

is a Hausdorff space as well.
Another way of constructing new topological spaces out of old ones is by

taking products. It turns out that the product of two Hausdorff spaces will
again be a Hausdorff space.

Proposition A.48. The product of Hausdorff spaces is Hausdorff.

Proof. If (x, y) ∈ M ×N is distinct from (x′, y′) ∈ M ×N , then either x 6= x′

or y 6= y′. If x 6= x′, then we can choose disjoint neighbourhoods Ux ⊆ M and
Ux′ ⊆M of x and x′ inside M . This yields disjoint neighbourhoods Ux×N and
Ux′ ×N of (x, y) and (x′, y′) inside M ×N . If x = x′, then y 6= y′ and we have
a similar argument where the roles of M and N are flipped.
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Summarizing, if a topological space is a metric space, a subspace of a Haus-
dorff space, or a product of Hausdorff spaces, then it will be Hausdorff itself.
Unfortunately, a quotient of a Hausdorff space is not always Hausdorff.

Example A.49 (CPn as a Hausdorff space). Since we constructed CPn as a
quotient space, we have to do some work to prove that it is Hausdorff. By
Proposition A.46 it suffices to construct a metric on this space. The angle θ
between two nonzero vectors v, w ∈ Cn+1 satisfies

cos(θ) =
|〈v, w〉|
‖v‖‖w‖

.

Since this angle does not depend on the representative v ∈ [v] and w ∈ [w], we
can use it to define the Fubini-Study metric on CPn, denoted dFS. The distance
between two rays [v], [w] ∈ CPn is simply defined to be the angle between them,

dFS([v], [w]) := arccos

(
|〈v, w〉|
‖v‖‖w‖

)
.

Since this expression is continuous in v, w on (Cn+1 \ {0}) × (Cn+1 \ {0}), the
metric is continuous on CPn × CPn.

A.6 Compact spaces

If a subset K of Rn is both closed and bounded, then it has the remarkable
property that every continuous function φ : K → R assumes a maximal value at
some point x ∈ K. In order to formulate and prove an analogous statement for
general topological spaces M , we need to make sense of the phrase “closed and
bounded” also if M is not equipped with a metric. In this context, the correct
generalization turns out to be compactness.

Definition A.50 (Covers). Let K be a subset of M , and let {Uα ; α ∈ A} be
a (not necessarily finite) collection of subsets of M . We say that the sets Uα
cover K if K ⊆

⋃
α∈A Uα.

Definition A.51 (Compact sets). A subset K ⊆ M is called compact if for
every open cover Uα of K, there exist finitely many Uα1

, . . . , Uαn that cover K.

A.6.1 Compact subsets of Rn

We prove that the compact subsets of Rn are precisely the sets which are both
closed and bounded. Important examples of compact sets are the closed blocks
and balls in Rn. We start by showing that the blocks are compact.

Lemma A.52. For any L > 0, the closed block

CL(x) := x+ [−L/2, L/2]n ⊆ Rn

centered at x ∈ Rn is compact.
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Proof. Let Uα ⊆ Rn be an open cover of CL(x), and suppose that CL(x) cannot
be covered by any finite collection Uα1 , . . . , Uαn . We derive a contradiction by
looking at increasingly smaller subblocks.

Since CL(x) can be covered by 2n blocks with lenght 1
2L, at least one of

these blocks cannot be covered by finitely many Uα’s. (Why?) Let C 1
2L

(x1)

be one such block. Repeating the above argument for C 1
2L

(x1), we find a sub-

block C( 1
2 )2L(x2) of length ( 1

2 )2L that cannot be covered by finitely many Uα’s.
Continuing in this way, we find a nested sequence of blocks

CL(x) ⊃ C 1
2L

(x1) ⊃ C( 1
2 )2L(x2) ⊃ C( 1

2 )3L(x3) ⊃ . . . ,

none of which can be covered by finitely many Uα’s.
We show that xi is a Cauchy sequence, so that it converges to a point

x∞ ∈ CL(x). For this, note that if i, j ≥ N , then xi and xj are in the block
C( 1

2 )NL(xN ). It follows that their distance d(xi, xj) is at most equal to the

diameter of this block, d(xi, xj) ≤ ( 1
2 )NL

√
n (recall that n is the dimension).

Since this tends to zero for N → ∞, the sequence xi is Cauchy, and converges
to a point x∞ ∈ CL(x).

Since the Uα’s cover CL(x), we have x∞ ∈ Uβ for at least one Uβ . Since
Uβ is open, there exists an ε > 0 such that y ∈ Uβ if d(x∞, y) < ε. For
sufficiently large i, we have that d(xi, x∞) < ε/2, and also d(xi, y) < ε/2 for
any y ∈ C( 1

2 )iL(xi), so the entire block C( 1
2 )iL(xi) is contained in Uβ .

But then C( 1
2 )iL(xi) is covered by finitely many Uα’s (it is even covered by

a single one), which is a contradiction.

Other important examples of compact sets are the closed balls Br(x) ⊆ Rn
of radius r. Since Br(x) ⊆ C2r(x), this follows from the following proposition.

Proposition A.53. A closed subset C of a compact set K is compact.

Proof. Suppose that the open sets Uα cover C. If we add the single open set
U0 := M − C, then we obtain a cover of M , and hence of K. Since K is
compact, it is covered by U0, together with finitely many sets Uα1

, . . . , Uαk
from the original cover. Since C is contained in K, these sets cover C as well.
But since C does not intersect U0 := M − C, we can omit U0 from the cover,
and conclude that C is already covered by the sets Uα1 , . . . , Uαk .

In particular, any closed, bounded subset of Rn is compact. To prove the
converse, we need the following, surprisingly useful result.

Proposition A.54. A compact subset K of a Hausdorff space M is closed.

Proof. We need to prove that M −K is open. Let x ∈M −K and y ∈ K. Since
M is Hausdorff, there exist open neighbourhoods Ux,y of x and Vx,y of y which
do not intersect, Ux,y ∩ Vx,y = ∅. Since K is compact and covered by the Vx,y
with y ∈ K, it can be covered by finitely many sets Vx,y1 , . . . , Vx,yk of this type.

Consider the finite intersection U :=
⋂k
i=1 Ux,yi , and the finite union V :=⋃k

i=1 Vx,yi . Since x ∈ U , K ⊆ V , and U ∩ V = ∅ (why?), it follows that
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U is an open neighbourhood of x in M − K. Since we can find such open
neighbourhoods for any x ∈M −K, it follows that M −K is open, and hence
that K is closed.

We have already seen that every closed, bounded subset of Rn is compact.
Conversely, we can now show that every compact subset K ⊆ Rn is both closed
and bounded. Since Rn is Hausdorff, every compact subset K ⊆ Rn is closed
by the above proposition. To see that K is also bounded, cover it by open balls
BN (0) centered at the origin with radius N . Since this admits a finite subcover,
the set K is contained in a ball with finite radius, which is precisely what it
means to be bounded.

Corollary A.55. A subset of Rn is compact if and only if it is both closed and
bounded.

The nice thing about compactness is that, quite unlike closedness, it is a
property that is preserved by continuous maps.

Corollary A.56. Let φ : M → N be a continuous map.

a) If K ⊆M is compact, then φ(K) ⊆ N compact as well.

b) Suppose that M is compact and N is Hausdorff.
Then if C ⊆M is closed, φ(C) ⊆ N is closed as well.

c) Suppose that M is compact and N is Hausdorff.
Then every continous bijection φ : M → N is a homeomorphism.

Proof. For (a), suppose that the open sets Uα cover φ(K). Since φ is continuous,
the sets φ−1(Uα) are open. Since they cover the compact set K, they admit a
finite subcover φ−1(Uα1

), . . . , φ−1(Uαk). Since their images Uα1
, . . . , Uαk con-

stitute a finite cover of φ(K), the latter is compact.
For (b), note that the closed subset C ⊆M is compact by Proposition A.53,

the continuous image φ(C) of the compact set C is compact by (a), and the
compact subset φ(C) ⊆ N is closed by Proposition A.54.

For (c), it suffices to prove that the image φ(U) of every open subset U ⊆M
is open (why?). This follows from (b) as N − φ(U) = φ(M − U) is closed.

If one wants to show that a map φ : M → N is a homeomorphism, it is
often easy to see that it is continuous and bijective, and harder to show that
the inverse is continuous. The above corollary allows one to circumvent this.

Problem A.57. Let T2 := R2/Z2 be the 2-torus, equipped with the topology
defined in §A.3.2. To embed T2 in R3, let 0 < r < R be the radii of the ‘small’
and ‘big’ circle, and let φ : T2 → R3 be the parameterisation of the torus by two
angles x and y,

φ(x, y) = R(cos(x/2π), sin(x/2π), 0)

+ r sin(y/2π)(cos(x/2π), sin(x/2π), 0) + r cos(y/2π)(0, 0, 1) .
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a) Show that T2 is compact. (Hint: it is the image of a compact subset of
R2 under the continuous projection π : R2 → T2.)

b) Show that φ is continuous and injective. Conclude that it is a homeomor-
phism onto its image.

Another interesting application of Corollary A.56 is the following result.

Corollary A.58. If K is compact, then every continuous map φ : K → R
assumes a maximal value at some point x ∈ K.

Proof. Since the image is compact and R is Hausdorff, φ(K) ⊆ R is closed and
bounded. Thus the supremum of the set φ(K) exists, and is a point φ(xmax) in
φ(K). In particular, φ assumes a maximal value at the point xmax ∈ K.
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B The inverse function theorem

We prove the Inverse Function Theorem for smooth functions F : U → Rn on
an open neighbourhood U ⊆ Rn of p ∈ Rn.

Theorem B.1 (Inverse Function Theorem). If DpF is invertible, there exist
open neighbourhoods U0 ⊆ Rn of p ∈ Rn and V0 ⊆ Rn of F (p) ∈ Rn such that
F |U0

: U0 → V0 is a diffeomorphism.

To prove the inverse function theorem, we need the following lemma.

Lemma B.2 (Contraction Lemma). Let B ⊆ Rn be a nonempty closed set, and
let C : B → B be a contraction, meaning that there exists a constant c < 1 such
that ‖C(x)−C(y)‖ ≤ c‖x−y‖ for all x, y ∈ B. Then C has a unique fixed point
in B.

Proof. There is at most one fixed point; if C(x) = x and C(x′) = x′, then
‖x′ − x‖ = ‖C(x′)− C(x)‖ < c‖x′ − x‖, so that x′ = x.

To show that there is at least one fixed point, choose x0 ∈ B and let xn+1 :=
C(xn) for n ≥ 1. We show that xn is a Cauchy sequence. Since

‖xn+1 − xn‖ = ‖C(xn)− C(xn−1)‖ ≤ c‖xn+1 − xn‖,

we have ‖xn+1 − xn‖ ≤ cn‖x1 − x0‖. For n > m, we thus have

‖xn − xm‖ ≤ ‖xn − xn−1‖+ . . .+ ‖xm+1 − xm‖ ≤ (cn−1 + . . .+ cm)‖x1 − x0‖

≤ cm
(∑∞

k=0 c
k
)
‖x1 − x0‖ =

cm

1− c
‖x1 − x0‖ .

It follows that xn is Cauchy, and hence that limn→∞ xn = x exists in the
closed set B. Since C is continuous (why?), we have C(x) = limn→∞ C(xn) =
limn→∞ xn+1 = x.

Proof of Theorem B.1. By changing F (x) to F ′(x) = F (x + p) − F (p), we
may assume that p = 0 and F (p) = 0. Then, by changing F (x) to F ′(x) =
(DF0)−1F (x), we may assume that DF0 = 1n is the identity matrix.

First we show that F is injective on a closed ball Bδ(0) around the origin.
The first order Taylor expansion of F around x = 0 is

F (x) = x+R1
0(x).

The derivative of the remainder term R0(x) = F (x) − x is given by DxR0 =
DxF −1n. This expression is continuous in x and zero at x = 0, so if we choose
δ > 0 sufficiently small, we have ‖DxR0‖ ≤ 1

2 for all x ∈ Bδ(0). It follows that

‖R0(x′)−R0(x)‖ ≤ 1
2‖x
′ − x‖ (139)

for all x, x′ ∈ Bδ(0). To see that F is injective on Bδ(0), note that since
x′ − x = (F (x′)− F (x)) + (R1

0(x)−R1
0(x′)), we have

‖x′ − x‖ ≤ ‖F (x′)− F (x)‖+ ‖R1
0(x)−R1

0(x′)‖ ≤ ‖F (x′)− F (x)‖+ 1
2‖x
′ − x‖,
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and hence
1
2‖x
′ − x‖ ≤ ‖F (x′)− F (x)‖. (140)

Next, we show that F is surjective on an open ball Bδ/2(0). For a given
y ∈ Bδ/2(0), we are looking for an x ∈ Bδ(0) such that F (x) = y. This is
equivalent to y−F (x) = 0, and hence to x−F (x)+y = x. The good thing about
this last equation is that it takes the form C(x) = x for C(x) := x− F (x) + y.
Since C(x) = y − R1

0(x) with ‖y‖ < δ/2 and ‖R1
0(x)‖ ≤ 1

2‖x‖ ≤ δ/2, we have

C(Bδ(0)) ⊆ Bδ(0). Further, C is a contraction because ‖C(x′) − C(x)‖ =
‖R1

0(x) − R1
0(x′)‖ ≤ 1

2‖x
′ − x‖. By the Contraction Lemma B.2, there is a

unique x ∈ Bδ(0) with C(x) = x, and hence F (x) = y. Since the image of C is
contained in the open ball Bδ(0), we have x ∈ Bδ(0).

We conclude that the restriction of F to Bδ/2(0) is bijective, and that F
(locally) has an inverse F−1 : F (Bδ/2(0))→ Bδ/2(0). To see that this inverse is
continuous, substitute x′ = F−1(y′) and x = F−1(y) in (140) to find

‖F−1(y′)− F−1(y)‖ ≤ 2‖y′ − y‖. (141)

Having shown that F : Bδ/2(0) → F (Bδ/2(0)) is a homeomorphism, it re-
mains to prove that F−1 is differentiable.

Suppose for a second that we already knew that F−1 were differentiable.
Then the derivative would be easy to calculate: just apply the chain rule to
F−1 ◦ F (x) = x. We find that if y = F (x), then Dy(F−1) ◦ DxF = 1, so
Dy(F−1) = (DxF )−1. So if F−1 is differentiable in y ∈ F (Bδ/2(0)), then its
derivative must be Dy(F−1) = (DxF )−1.

The first thing to prove, then, is that DxF is invertible for x ∈ Bδ/2(0). This
can be achieved by shrinking δ if necessary. Indeed, since DxF is invertible if and
only if det(DxF ) 6= 0, and since the function x 7→ det(DxF ) is continuous with
value 1 at x = 0, there exists a δ > 0 such that det(DxF ) > 1

2 for ‖x‖ ≤ δ/2.
What we have to prove, then, is that F−1 is differentiable at y with derivative

(DxF )−1. Equivalently, we wish to show that the second order remainder term
R̃2
y(y′ − y) in the Taylor expansion

F−1(y′) = F−1(y) + (DxF )−1(y′ − y) + R̃2
y(y′ − y) (142)

satifies limy′→y ‖R̃2
y(y′ − y)‖/‖y′ − y‖ = 0. The strategy is to use the similar

expansion
F (x′) = F (x) + (DxF )(x′ − x) +R2

x(x′ − x) (143)

for the differentiable function F , where we already know that

lim
x′→x

‖R2
x(x′ − x)‖/‖x′ − x‖ = 0.

Substituting x′ = F−1(y′) and x = F−1(y) in (143), we find

y′ = y + (DxF )(F−1(y′)− F−1(y)) +R2
x(F−1(y′)− F−1(y)).
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Solving for F−1(y′) (using that DxF is invertible!), this yields

F−1(y′) = F−1(y) + (DxF )−1(y′ − y)− (DxF )−1R2
x(F−1(y′)− F−1(y)).

Comparing this to (142), we see that the remainder R̃2
y in the expansion of F−1

can be expressed in terms of the remainder R2
x in the expansion of F as

R̃2
y(y′ − y) = −(DxF )−1R2

x(F−1(y′)− F−1(y)).

With C := ‖(DxF )−1‖ the matrix norm of (DxF )−1, we have

R̃2
y(y′ − y)

‖y′ − y‖
≤ ‖(DxF )−1‖‖R

2
x(F−1(y′)− F−1(y))‖
‖F−1(y′)− F−1(y)‖

‖F−1(y′)− F−1(y)‖
‖y′ − y‖

≤ 2C
‖R2

x(F−1(y′)− F−1(y))‖
‖F−1(y′)− F−1(y)‖

, (144)

where the second inequality follows from (141). To show that the limit of
(144) for y′ → y is zero, note that since F−1 is continuous, y′ → y implies
F−1(y′)→ F−1(y), so that

lim
y′→y

‖R2
x(F−1(y′)− F−1(y))‖
‖F−1(y′)− F−1(y)‖

= lim
x′→x

‖R2
x(x′ − x)‖
‖x′ − x‖

= 0 .

It follows that limy′→y R̃
2
y(y′ − y)/‖y′ − y‖ = 0, and we conclude that F−1 is

differentiable for all x ∈ Bδ/2(0), with derivative DyF
−1 = (DxF )−1. To see

that F−1 is C1, note that the derivative y 7→ DyF
−1 is the concatenation of

the maps y 7→ x := F−1(y), x 7→ DxF , and the matrix inverse M 7→ M−1, all
of which are continuous.

We prove by induction that F−1 is Ck for every k, and hence that it is
smooth. The case k = 1 is what we proved so far. Suppose by induction that
y 7→ F−1(y) is Ck. Then since the maps x 7→ DxF and M 7→ M−1 are C∞,
the concatenation y 7→ (DF−1(y)F )−1 is Ck by the chain rule. It follows that

y 7→ DyF
−1 is Ck, and, hence, that F−1 is Ck+1.
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C Holomorphic functions in several variables

Let D be an open subset of Cn. A function f : D → C of n complex variables
is called holomorphic if for every a ∈ D, there exists an open neighbourhood
U ⊆ D on which the power series expansion

f(z1, . . . , zn) =

∞∑
k1=0

. . .

∞∑
kn=0

ck1,...,kn(z1 − a1)k1 · · · (zn − an)kn (145)

is convergent. A function F : D → Cm is holomorphic if all of its components
Fj : D → C are holomorphic.

If the power series (145) is convergent at a point b ∈ D with ri := |bi − ai| > 0,
then it converges absolutely and uniformly on the open polydisc

∆(a, r) := {z ∈ Cn ; |zi − ai| < ri for i = 1, . . . , n}.

In particular, the function f is continuous on D, since it can locally be expressed
as a uniform limit of continuous functions. Because the convergence is uniform
on ∆(a, r), the summation in (145) can be performed in any order. From this, it
is not hard to see that the function zi 7→ f(z1, . . . , zi, . . . zn) admits a convergent
power series expansion, so that f is holomorphic in each of its arguments.

Lemma C.1 (Osgood’s Lemma). Suppose that f : D → C is continuous, and
that f is holomorphic in each of its variables. Then f is holomorphic on D.

Proof. For any a ∈ D, we can choose a closed polydisc ∆(a, r) ⊆ D contained
in D. Since f is holomorphic in every single variable zi, we can apply Cauchy’s
formula to the variables z1 through zn successively. For every z ∈ ∆(a, r), this
yields the repeated integral

f(z) =
1

(2πi)n

∮
γ1

. . .

∮
γn

f(ζ)

(ζ1 − z1) · · · (ζn − zn)
dζn . . . dζ1, (146)

where γi denotes the curve γi = {ζi ∈ C ; |ζi − ai| = ri}. Since f is continuous
on D, we can use Fubini’s Theorem to write this as an n-dimensional integral
over the product γ1 × . . .× γn ⊆ Cn,

f(z) =
1

(2πi)n

∫
γ1×...×γn

f(ζ)

(ζ1 − z1) · · · (ζn − zn)
d(ζ1, . . . , ζn). (147)

Since the geometric series

1

(ζi − zi)
=

1

ζi − ai
· 1

1− zi−ai
ζi−ai

=

∞∑
k=0

(zi − ai)k

(ζi − ai)k+1
(148)

converges absolutely and uniformly for ζ ∈ γ1× . . .×γn, we can substitute (148)
in (147) to obtain a convergent power series expansion (145) with coefficients

ck1,...,kn :=
1

(2πi)n

∫
γ1×...×γn

f(ζ)

(ζ1 − a1)k1+1 · · · (ζn − an)kn+1
d(ζ1, . . . , ζn).
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Remark C.2. In fact, we have shown that the power series expansion (145) is
convergent on any polydisc ∆(a, r) that is contained in the domain D of f .

By writing zi = xi + iyi as the sum of its real and imaginary parts, we can
identify Cn = Rn ⊕ iRn with R2n. Multiplication by i on R2n is represented by
the 2n× 2n matrix

Jn =

(
0 In
−In 0

)
,

so an R-linear map A : R2n → R2m is C-linear if and only if JmA = AJn. From
Osgood’s Lemma, we obtain the following useful characterization of holomorphic
functions.

Proposition C.3. A function F : R2n ⊃ D → R2m is holomorphic if and only
if it is differentiable, and if the total derivative DzF : R2n → R2m is C-linear
for all z ∈ D.

Proof. By Osgood’s Lemma, F : R2n ⊇ D → R2m is holomorphic if and only
if its components Fj satisfies the Cauchy–Riemann equations in every variable
zi separately. If we split Fj(z) = uj(x, y) + ivj(x, y) into a real and imaginary
part, the Cauchy–Riemann equations read

∂uj
∂xi

=
∂vj
∂yi

,
∂uj
∂yi

= −∂vj
∂xi

.

So F is holomorphic if and only if there exist m×n matrices A and B such that
DzF takes the form (

A B
−B A

)
.

This, in turn, is equivalent to (DzF )Jn = Jm(DzF ).

In particular, the concatenation F ◦G of two holomorphic functions F and
G is holomorphic. Indeed, since DG(z)F and DzG are C-linear, the same holds
for their product Dz(F ◦G) = DG(z)F ·DzG.

Just like in the single variable case, holomorphic functions on a connected
domain D ⊆ Cn are completely determined by their values in an arbitrarily
small open set.

Proposition C.4. Let D be a connected, open subset of Cn. If two holomorphic
functions f, g : D → C agree on an open subset of D, then they agree on all of D.

Proof. Let U be the interior of the closed set {z ∈ D ; f(z) − g(z) = 0}. Then
U is open in D by definition. It suffices to prove that U is also closed in D.
Indeed, D = U ∪ (D \ U) is then the disjoint union of two open subsets, so
Definition A.9 implies that either U or D \U is empty. Since U is nonempty by
assumption, U \D must be empty. So U = D, and f(z) = g(z) for all z ∈ D.

To prove that U is closed, we show that a ∈ U for all a ∈ U . Let ∆(a, r)
be a polydisc around a that is completely contained in D. Since a is in the
closure of U , the set U ∩∆(a, r/2) is nonempty. For b ∈ U ∩∆(a, r/2), we have
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a ∈ ∆(b, r/2), with a polydisc ∆(b, r/2) that is completely contained in D. By
Remark C.2, the power series expansion

h(z) =

∞∑
k1=0

. . .

∞∑
kn=0

ck1,...,kn(z1 − b1)k1 · · · (zn − bn)kn

for h(z) := f(z) − g(z) is convergent on ∆(b, r/2). Since the coefficients are
given by the partial derivatives

ck1,...,kn =
1

k1! · · · kn!

∂k1+···+kn

∂z1 · · · ∂zn
h
∣∣∣
z=b

of h at b, and since h is identically zero on an open neighbourhood of b ∈ U , we
have ck1,...,kn = 0. It follows that h is zero on the open neighbourhood ∆(b, r/2)
of a, so in particular a ∈ U .

Remark C.5. In fact, the proof shows that f and g agree on D if they have
the same value and partial derivatives (to all orders) at a single point a ∈ D.

Just like holomorphic functions of a single variable, holomorphic functions
of several variables satisfy a maximum modulus principle.

Proposition C.6 (Maximum modulus principle). Let D ⊆ Cn be a connected
open subset, and let f : D → C be a holomorphic function on D. If the absolute
value |f(z)| has a local maximum on D, then f is constant on D.

Proof. Suppose that |f(z)| achieves a maximum at a ∈ D, and let ∆(a, r) ⊆ D
be a polydisc in D around a. Note that g(t) := f((1−t)a+tb)) is a holomorphic
function of a single variable t which has a local maximum at t = 0. By the
maximum modulus principle for holomorphic functions of a single variable, it is
constant on an open neighbourhood of the unit interval [0, 1] ⊆ C. In particular
we have f(b) = g(1) = g(0) = f(a) for all b ∈ ∆(a, r), so f is constant on
∆(a, r). By Proposition C.4, this implies that f is constant on D.
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